Skillnad mellan versioner av "2.5 Fördjupning till Deriveringsregler"

Från Mathonline
Hoppa till: navigering, sök
m
m
Rad 30: Rad 30:
 
då <math> {\color{White} x} y\,' \,=\, f\,'(x) \,=\, \displaystyle \lim_{h \to 0} \, {f(x+h) - f(x) \over h} </math>
 
då <math> {\color{White} x} y\,' \,=\, f\,'(x) \,=\, \displaystyle \lim_{h \to 0} \, {f(x+h) - f(x) \over h} </math>
 
</big></div>
 
</big></div>
 
  
 
Denna definition kommer att ligga till grund för alla våra bevis för deriveringsreglerna.
 
Denna definition kommer att ligga till grund för alla våra bevis för deriveringsreglerna.

Versionen från 16 oktober 2014 kl. 16.51

       <-- Förra avsnitt          Teori          Övningar          Fördjupning          Nästa avsnitt -->      


Lektion 26 Deriveringsregler I

Lektion 27 Deriveringsregler II


Bevis av deriveringsreglerna

Att använda deriveringsreglerna är en sak, att bevisa dem en annan.

Av praktiska skäl har vi skilt dessa två från varandra fram för allt för att underlätta den direkta användningen av deriveringsreglerna i övningar, prov osv. Vill man förstå varför de ser ut som de gör och hur de kommer till kan man läsa detta avsnitt. Vi rekommenderar förstås att göra det för att få en förståelse för matematiken bakom reglerna och på så sätt kunna klara av även lite mer avancerade uppgifter. I förra avsnitt hade vi ställt upp:

Derivatans definition

Om \( {\color{White} x} y \,=\, f(x) \)

då \( {\color{White} x} y\,' \,=\, f\,'(x) \,=\, \displaystyle \lim_{h \to 0} \, {f(x+h) - f(x) \over h} \)

Denna definition kommer att ligga till grund för alla våra bevis för deriveringsreglerna.


Derivatan av en konstant

Påstående:

Derivatan av en konstant är 0.

Om \( {\color{White} x} f(x) = c \quad {\rm där} \quad c = {\rm const.} \)

då \( {\color{White} x} f\,'(x) = 0 \).

Bevis:

Om vi tillämpar derivatans definition på \( f(x) = c\, \) kan vi skriva:

\[ f\,'(x) = \lim_{h \to 0} \, {f(x+h) \, - \, f(x) \over h} = \lim_{h \to 0} \, {c \, - \, c \over h} \; = \; \lim_{h \to 0} \, {0 \over h} \; = \; 0 \]

Att \( f(x+h) = c\, \) inser man när man preciserar den givna funktionen \( f(x) = c\, \) genom att betona för alla \( {\color{Red} x} \). Dvs funktionen \( \,f(x)\):s värde är alltid konstant oavsett vad man sätter in för \( x\, \) i \( \,f(x)\). Detta även om man sätter in ett uttryck för \( x\, \), i det här fallet \( x+h\, \).

Exempel:

För funktionen \( f(x) = -5\, \) blir derivatan:

\[ f\,'(x) = \lim_{h \to 0} \, {f(x+h) \, - \, f(x) \over h} = \lim_{h \to 0} \, {-5 \, - \, (-5) \over h} = \lim_{h \to 0} \, {-5 \, + \, 5 \over h} = \lim_{h \to 0} \, {0 \over h} = 0 \]


Derivatan av en linjär funktion

Påstående:

Derivatan av en linjär funktion är konstant.

Om \( f(x) \; = \; k\cdot x \, + \, m \quad {\rm där} \quad k,\,m = {\rm const. } \)

då \( f\,'(x) \; = \; k \)

Bevis:

Om vi tillämpar derivatans definition på \( f(x) = k\cdot x + m \) kan vi skriva\[ f\,'(x) = \lim_{h \to 0} \, {f(x+h) - f(x) \over h} = \lim_{h \to 0} \, {k\cdot (x+h) + m - (k\cdot x + m) \over h} = \lim_{h \to 0} \, {k\cdot x + k\cdot h + m - k\cdot x - m \over h} = \lim_{h \to 0} \, {k\cdot h \over h} = k \]

Att \( f(x+h) = k\cdot (x+h) + m \) inser man när man i funktionen \( f(x)= k\cdot x + m \) ersätter \( x\, \) med \( x+h\, \).

Exempel:

För funktionen \( f(x) = -8\,x + 9 \) blir derivatan\[ f\,'(x) = \lim_{h \to 0} \, {f(x+h) \, - \, f(x) \over h} = \lim_{h \to 0} \, {-8\, (x+h) + 9 - (-8\,x + 9) \over h} = \lim_{h \to 0} \, {-8\, x -8\, h + 9 + 8\, x - 9 \over h} = \lim_{h \to 0} \, {-8\, h \over h} = -8 \]


Derivatan av en kvadratisk funktion

Påstående:

Derivatan av en kvadratisk funktion är en linjär funktion.

Om \( f(x) \; = \; a\,x^2 \, + \, b\,x \, + \, c \quad {\rm där} \quad a,\,b,\,c = {\rm const. } \)

då \( f\,'(x) \; = \; 2\,a\,x \, + \, b \)

Bevis:

Först ställer vi upp de uttryck som förekommer i derivatans definition.

För att ställa upp \( f\,(x+h) \) ersätter vi \( x\, \) med \( x+h\, \) i funktionen \( f(x) = a\,x^2 + b\,x + c \) :

\[ \begin{array}{rcl} f\,(x+h) & = & a\,(x+h)^2 + b\,(x+h) + c & = \\ & = & a\,(x^2 + 2\,x\,h + h^2) + b\,x + b\,h + c & = \\ & = & a\,x^2 + 2\,a\,x\,h + a\,h^2 + b\,x + b\,h + c \end{array}\]

\[ \begin{array}{rcl} f\,(x+h) - f\,(x) & = & a\,x^2 + 2\,a\,x\,h + a\,h^2 + b\,x + b\,h + c - (a\,x^2 + b\,x + c) & = \\ & = & a\,x^2 + 2\,a\,x\,h + a\,h^2 + b\,x + b\,h + c - a\,x^2 - b\,x - c & = \\ & = & 2\,a\,x\,h + a\,h^2 + b\,h & = \\ \end{array}\]

\[ {f(x+h) - f(x) \over h} = {2\,a\,x\,h + a\,h^2 + b\,h \over h} = {h\cdot (2\,a\,x\ + a\,h + b) \over h} = 2\,a\,x\ + a\,h + b \]

Sedan tillämpar vi derivatans definition genom att bilda gränsvärdet:

\[ f\,'(x) \; = \; \lim_{h \to 0} \; (2\,a\,x\ + a\,h + b) \; = \; 2\,a\,x\ + b \]

Exempel:

För funktionen \( f\,(x) = 5\,x^2 - 3\,x + 6 \) bildas derivatan steg för steg med hjälp av derivatans definition:

\[ \begin{array}{rcl} f\,(x+h) & = & 5\,(x+h)^2 - 3\,(x+h) + 6 & = \\ & = & 5\,(x^2 + 2\,x\,h + h^2) - 3\,x - 3\,h + 6 & = \\ & = & 5\,x^2 + 10\,x\,h + 5\,h^2 - 3\,x - 3\,h + 6 \end{array}\]

\[ \begin{array}{rcl} f\,(x+h) - f\,(x) & = & 5\,x^2 + 10\,x\,h + 5\,h^2 - 3\,x - 3\,h + 6 - (5\,x^2 - 3\,x + 6) & = \\ & = & 5\,x^2 + 10\,x\,h + 5\,h^2 - 3\,x - 3\,h + 6 - 5\,x^2 + 3\,x - 6 & = \\ & = & 10\,x\,h + 5\,h^2 - 3\,h & = \\ \end{array}\]

\[ {f(x+h) - f(x) \over h} = {10\,x\,h + 5\,h^2 - 3\,h \over h} = {h\cdot (10\,x\ + 5\,h - 3) \over h} = 10\,x\ + 5\,h - 3 \]

\[ f\,'(x) = \lim_{h \to 0} \, (10\,x + 5\,h - 3) = 10\,x - 3 \]


Derivatan av \( \displaystyle {1 \over x} \)

Påstående:

Om \( \displaystyle f(x) \; = \; {1 \over x} \)
då \( \displaystyle f\,'(x) \; = \; - \, {1 \over x^2} \)

Bevis (med derivatans definition):

\[ f(x+h) - f(x) = {1 \over x+h} - {1 \over x} = {x \over x\,(x+h)} - {x+h \over x\,(x+h)} = {x - (x+h) \over x\,(x+h)} = {x - x - h \over x\,(x+h)} = {- h \over x\,(x+h)} \]

\[ {f(x+h) - f(x) \over h} = {- h/h \over x\,(x+h)}= {- 1 \over x\,(x+h)} \]

\[ f\,'(x) = \lim_{h \to 0} {f(x+h) - f(x) \over h} = \lim_{h \to 0} \; {- 1 \over x\,(x+h)} = {- 1 \over x\,(x+0)} = - \, {1 \over x^2} \]

Alternativt (med deriveringsregeln för potenser):

\[ f(x) = {1 \over x} = x^{-1} \]
\[ f\,'(x) = (-1)\cdot x^{-1-1} = (-1)\cdot x^{-2} = - \, {1 \over x^2} \]


Derivatan av \( \sqrt{x} \)

Påstående:

Om \( f(x) \; = \; \sqrt{x} \)
då \( f\,'(x) \; = \; {1 \over 2\, \sqrt{x}} \)

Bevis (med deriveringsregeln för potenser):

\[ f(x) = \sqrt{x} = x\,^{1 \over 2} \]
\[ f\,'(x) = {1 \over 2}\cdot x\,^{{1 \over 2}-1} = {1 \over 2}\cdot x\,^{-{1 \over 2}} = {1 \over 2}\cdot {1\over x\,^{1 \over 2}} = {1 \over 2}\cdot {1\over \sqrt{x}} = {1 \over 2\, \sqrt{x}} \]


Derivatan av ett polynom

Hittills har vi betraktat isolerade termer. Men hur blir det om de summeras med varandra och på så sätt sammansätts till ett polynom?

Sats:

En polynomfunktion deriveras termvis, dvs:
Om \( f(x) = a_n\, x^n \qquad\,\, + \, a_{n-1}\, x^{n-1} \qquad\qquad + \quad \ldots \quad + a_1\, x + \, a \)
då \( f\,'(x) = n\cdot a_n \, x^{n-1} \, + \, (n-1)\cdot a_{n-1} \, x^{n-2} \, + \quad \ldots \quad + \, a_1 \)


Exempel:

För polynomfunktionen \( f(x) = {1 \over 2}\,x^4\,+\,{5 \over 6}\,x^3\,-\,0,8\,x^2\,+\,12\,x\,-\,9 \) blir derivatan:

\[ f\,'(x) \, = 4\cdot {1 \over 2}\,x^3 + 3\cdot {5 \over 6}\,x^2 - 2\cdot 0,8\,x + 12 = 2\,x^3 + {5 \over 2}\,x^2 - 1,6\,x + 12 \]