Potenser
<< Repetitioner | Genomgång | Quiz | Övningar | 1:a avsnitt: Polynom >> |
OBS! Förväxla inte begreppen: \( \, 2\,^3 \, \) är själva potensen, medan \( \, {\color{Red} 3} \, \) är exponenten och \( \, {\color{green} 2}\, \) förstås basen.
Exponenten \( \, {\color{Red} 3} \, \) är inget tal som ingår i beräkningen, utan endast en information om att:
\( \, 2 \, \) ska multipliceras \( \, {\color{Red} 3} \, \) gånger med sig själv, en förkortning för upprepad multiplikation (jfr. upprepad addition).
Exempel
Förenkla: \( \qquad \displaystyle{2\,^3 \cdot \; 2\,^5 \over 2\,^4} \)
Lösning: \( \qquad \displaystyle{{2\,^3 \cdot \; 2\,^5 \over 2\,^4} \, = \, {2 \cdot 2 \cdot 2 \quad \cdot \quad 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \over 2 \cdot 2 \cdot 2 \cdot 2} \, = \, {2 \cdot 2 \cdot 2 \quad \cdot \quad 2 \cdot \cancel{2 \cdot 2 \cdot 2 \cdot 2} \over \cancel{2 \cdot 2 \cdot 2 \cdot 2}} \, = \, 2 \cdot 2 \cdot 2 \cdot 2 \, = \, 4 \cdot 4 \, = \, 16} \)
- OBS! Förenkla alltid först, räkna sedan!
Snabbare: \( \qquad\!\! \displaystyle{{2\,^3 \cdot \; 2\,^5 \over 2\,^4} \, = \, 2\,^{3\,+\,5\,-\,4} \, = \, 2\,^4 \, = \, 2 \cdot 2 \cdot 2 \cdot 2 \, = \, 4 \cdot 4 \, = \, 16} \)
För att förstå den snabbare lösningen se Potenslagarna.
Generellt:
Potenser med positiva exponenter
Potensen \( \, a\,^{\color{Red} x} \, \) med positiv exponent (\( x \, \) heltal \( > 0 \, \) och \( \, a \, \neq 0 \)) kan definieras som:
- Upprepad multiplikation av \( \, a \, \) med sig själv, \( \, {\color{Red} x} \, \) gånger:
- \( \quad a\,^{\color{Red} x} = \underbrace{a \cdot a \cdot a \cdot \quad \ \cdots \quad \cdot a}_{{\color{Red} x}\;{\rm gånger}} \)
Potenslagarna
Första potenslagen: \( \qquad\qquad\quad\;\, a^x \cdot a^y \; = \; a\,^{x \, + \, y} \qquad\qquad \)
Andra potenslagen: \( \qquad\qquad\qquad\;\;\; \displaystyle {a^x \over a^y} \; = \; a\,^{x \, - \, y} \qquad\qquad \)
Tredje potenslagen: \( \qquad\qquad\qquad \displaystyle {(a^x)^y} \; = \; a\,^{x \, \cdot \, y} \qquad\qquad \)
Lagen om nollte potens: \( \qquad\qquad\quad\;\;\, a\,^0 \; = \; 1 \qquad\qquad \)
Lagen om negativ exponent: \( \qquad\quad\;\;\; a\,^{-x} \; = \; \displaystyle {1 \over a\,^x} \qquad\qquad \)
Potens av en produkt: \( \qquad\qquad\;\, (a \cdot b)\,^x \; = \; a\,^x \cdot b\,^x \qquad\qquad \)
Potens av en kvot: \( \qquad\qquad\qquad\, \left(\displaystyle {a \over b}\right)^x \; = \; \displaystyle {a\,^x \over b\,^x} \qquad\qquad \)
Dessa lagar gäller för potenser där baserna \( \, a,\,b \, \) är tal \( \, \neq 0 \, \) och exponenterna \( \, x,\,y \, \) är godtyckliga tal.
Exempel på första potenslagen
Förenkla: \( \quad\;\; a\,^2 \, \cdot \, a\,^3 \)
Lösning:
- \( a\,^2 \cdot a\,^3 \; = \; \underbrace{a \cdot a}_{2\;\times} \; \cdot \; \underbrace{a \cdot a \cdot a}_{3\;\times} \; = \; \underbrace{a \cdot a \cdot a \cdot a \cdot a}_{{\color{Red} 5}\;\times} \; = \; a\,^{\color{Red} 5}\)
Snabbare:
- \( a\,^2 \cdot a\,^3 \; = \; a\,^{2\,+\,3} = \; a\,^{\color{Red} 5} \)
Den snabbare lösningen ovan är ett exempel på den första potenslagen. Nedan följer ett exempel på den andra potenslagen.
Exempel på andra potenslagen
- \( \displaystyle {a\,^{\color{Red} 5} \over a\,^{\color{Red} 3}} \; = \; {a \cdot a \cdot a \cdot a \cdot a \; \over \; a \cdot a \cdot a} \; = \; {a \cdot a \cdot \cancel{a \cdot a \cdot a} \; \over \; \cancel{a \cdot a \cdot a}} \; = \; a \cdot a \; = \; a\,^2 \)
Snabbare:
- \( \displaystyle {a\,^{\color{Red} 5} \over a\,^{\color{Red} 3}} \; = \; a\,^{{\color{Red} {5\,-\,3}}} \; = \; a\,^2 \)
Potensbegreppet definierades inledningsvis endast för positiva exponenter. Men den definitionen duger varken för negativa exponenter eller för exponenten \( \, 0 \, \):
Antalet multiplikationer av basen med sig själv kan inte vara negativt eller \( \, 0 \, \). Det behövs nya definitioner resp. slutsatser.
Potenser med negativa exponenter
Potens med negativ exponent: \( \qquad \displaystyle 2\,^{\color{Red} {-3}} \; = \;\; \frac{1}{2\,^{\color{Red} {3}}} \; = \; \frac{1}{8} \quad \) Invertera potensen med positiv exponent. Att "invertera" t.ex. \( \, 10 \, \) ger \( \, \displaystyle {1 \over 10} \; \).
|
Andra exempel:
|
Generellt:
Påstående:
Lagen om negativ exponent \( \quad a\,^{-x} \; = \; \displaystyle {1 \over a\,^x} \)
Bevis:
- \( \displaystyle{1 \over a^x} \; = \; \displaystyle{a^0 \over a^x} \; = \; a^{0-x} \; = \; a^{-x} \)
In den första likheten har vi använt lagen om nollte potens baklänges: \( \; 1 = a^0 \; \).
In den andra likheten har vi använt andra potenslagen: \( \; \displaystyle {a^x \over a^y} \; = \; a\,^{x \, - \, y} \; \).
Efter dessa steg får vi påståendet, fast baklänges.
Potenser med exponenten \( \, 0 \, \)
Exempel:
\( \quad \displaystyle 2\,^{\color{Red} 0} \;\; = \;\; 1 \quad \)
Generellt:
Påstående:
Lagen om nollte potens \( \quad a^0 \; = \; 1 \; \)
Bevis:
Påståendet kan bevisas genom att använda andra potenslagen:
- \( \displaystyle{a^x \over a^x} \; = \; a^{x-x} \; = \; a^0 \)
Å andra sidan vet vi att ett bråk med samma täljare som nämnare har värdet \( \, 1 \):
- \( \displaystyle{a^x \over a^x} \; = \; 1 \)
Av raderna ovan följer påståendet:
- \( a^0 \; = \; 1 \)
I båda föregående påståenden ska alltid gälla: \( \quad x \, \) heltal \( > 0 \, \) och \( \, a \, \neq 0 \quad \).
Exemplet nedan ska illustrera lagen ovan genom att visa följande:
Potenser med negativa exponenter är en naturlig fortsättning på potenser med positiva exponenter.
Nollte potensen bildar övergången mellan positiva och negativa exponenter, precis som \( \, 0 \, \) är övergången mellan positiva och negativa tal:
Varför är \( \; 5\,^0 \, = \, 1 \; \)?
- \[ \;\; 5^4 \; = \; {\color{Red} 1} \cdot 5 \cdot 5 \cdot 5 \cdot 5 \]
- \[ \;\; 5^3 \; = \; {\color{Red} 1} \cdot 5 \cdot 5 \cdot 5 \]
- \[ \;\; 5^2 \; = \; {\color{Red} 1} \cdot 5 \cdot 5 \]
- \[ \;\; 5^1 \; = \; {\color{Red} 1} \cdot 5 \]
- \[ \; \boxed{{\color{Red} {5^0 \; = \; 1}}} \]
- \[ \;\; 5^{-1} \; = \; \displaystyle{{\color{Red} 1} \over 5} \]
- \[ \;\; 5^{-2} \; = \; \displaystyle{{\color{Red} 1} \over 5 \cdot 5} \]
- \[ \;\; 5^{-3} \; = \; \displaystyle{{\color{Red} 1} \over 5 \cdot 5 \cdot 5} \]
- \[ \;\; 5^{-4} \; = \; \displaystyle{{\color{Red} 1} \over 5 \cdot 5 \cdot 5 \cdot 5 } \]
Att \( \; {\color{Red} 1} \)-orna följer med hela tiden beror på att multiplikationens enhet är \( \, {\color{Red} 1} \), dvs \( \, a \cdot {\color{Red} 1} \, = \, a \).
Därför blir endast \( \, {\color{Red} 1} \, \) kvar, när vi kommer till \( \, {\color{Red} {5^0}} \, \) då alla \( \, 5\)-or har försvunnit.
Potenser med rationella exponenter
Här ska vi lägga till Potenslagarna ytterligare tre lagar om potenser med rationella exponenter.
Potenser med rationella exponenter är potenser som har rationella tal (bråktal) i exponenten.
De är bara ett annat sätt att skriva rötter, både kvadratrötter och högre rötter:
Påstående:
Lagen om kvadratroten \( \quad a^{1 \over 2} \; = \; \sqrt{a} \)
Bevis:
Vi multiplicerar \( a \)\(^{1 \over 2} \) två gånger med sig själv och använder första potenslagen:
- \( \displaystyle a^{1 \over 2} \cdot a^{1 \over 2} \; = \; a^{{1 \over 2} + {1 \over 2}} \; = \; a^{2 \over 2} \; = \; a^1 \; = \; a \)
Vi drar kvadratroten ur båda leden och går vidare:
- \(\begin{array}{rclcl} a^{1 \over 2} \cdot a^{1 \over 2} & = & a & \qquad | & \sqrt{\,.\,} \\ \sqrt{a^{1 \over 2} \cdot a^{1 \over 2}} & = & \sqrt{a} & & \\ a^{1 \over 2} & = & \sqrt{a} & \qquad & \\ \end{array}\)
V.s.b. (Vilket skulle bevisas)
I följande ska \( \; n \; \) vara ett heltal \( > 0 \) och \( \, a \, \neq 0 \).
Påstående:
Lagen om högre rötter \( \quad a^{1 \over n} \; = \; \sqrt[n]{a} \)
Bevisidé:
Vi visar påståendet för specialfallet \( \, n=3 \):
Vi multiplicerar \( a \)\(^{1 \over 3} \) tre gånger med sig själv och använder första potenslagen:
- \( \displaystyle a^{1 \over 3} \cdot a^{1 \over 3} \cdot a^{1 \over 3} \; = \; a^{{1 \over 3} + {1 \over 3} + {1 \over 3}} \; = \; a^{3 \over 3} \; = \; a^1 \; = \; a \)
Vi drar 3:e roten ur båda leden och går vidare:
- \(\begin{array}{rclcl} a^{1 \over 3} \cdot a^{1 \over 3} \cdot a^{1 \over 3} & = & a & \qquad | & \sqrt[3]{\,.\,} \\ \sqrt[3]{a^{1 \over 3} \cdot a^{1 \over 3} \cdot a^{1 \over 3}} & = & \sqrt[3]{a} & & \\ a^{1 \over 3} & = & \sqrt[3]{a} & \qquad & \\ \end{array}\)
V.s.b.
Denna bevisidé kan vidareutvecklas till det allmänna fallet, där \( \, m \, \) ska vara ett heltal, \( \, n \, \) ett heltal \( > 0 \) och \( \, a \, \neq 0 \):
Lagen om rationell exponent \( \quad \displaystyle a^{m \over n} \; = \; \sqrt[n]{a^m} \)
Tabellen över Potenslagarna borde kompletteras med dessa lagar för rationella exponenter.
Potensekvationer
Anta i fortsättningen att \( \, x \, \) är en okänd variabel och \( b\, \) och \( c\, \) givna konstanter \( \neq 0 \) .
- Funktioner av typ \( y = x^3\, \) kallas för potensfunktioner, generellt \( \; y = c \cdot x^b\, \).
- Ekvationer av typ \( x^3\, = 8 \) kallas för potensekvationer, generellt \( \; x^b\, = c \).
I potensfunktioner och -ekvationer förekommer \( \, x \, \) i basen.
Rotdragning är ekvivalent (identiskt) med potentiering med rationella exponenter.
För t.ex. potensekvationen \( x^3\, = 8 \) finns det två olika sätt att beskriva lösningen:
- \(\begin{array}{rclcl} x^3 & = & 8 & \qquad | & \sqrt[3]{\,.\,} \\ \sqrt[3]{x^3} & = & \sqrt[3]{8} & & \\ x & = & 2 & & \\ \end{array}\)
Alternativt kan rötter skrivas som potenser med rationella exponenter:
- \(\begin{array}{rclcl} x^3 & = & 8 & \qquad | & (\,\cdot\,)^{1 \over 3} \\ (x^3)^{1 \over 3} & = & 8^{1 \over 3} & & \\ x^{3\cdot{1 \over 3}} & = & 8^{1 \over 3} & & \\ x & = & 2 & & \\ \end{array}\)
I övergången från den andra till den tredje raden har den 3:e potenslagen använts på vänsterledet.
Blandade exempel
Internetlänkar
http://www.youtube.com/watch?v=iYgG4LUqXks
http://www.webbmatte.se/gym/arabiska/2/2_8_4sv.html
http://www.webbmatte.se/gym/arabiska/2/2_8_3sv.html
http://wiki.math.se/wikis/forberedandematte1/index.php/1.3_%C3%96vningar
Copyright © 2010-2019 Math Online Sweden AB. All Rights Reserved.