Skillnad mellan versioner av "Potenser"

Från Mathonline
Hoppa till: navigering, sök
m
m
Rad 1: Rad 1:
 
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%"
 
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%"
 
| style="border-bottom:1px solid #797979" width="5px" |  
 
| style="border-bottom:1px solid #797979" width="5px" |  
{{Not selected tab|[[1.1 Polynom|<-- Tillbaka till Polynom]]}}
+
{{Not selected tab|[[1.1 Polynom|<-- Till Polynom]]}}
 
{{Selected tab|[[Potenser|Genomgång]]}}
 
{{Selected tab|[[Potenser|Genomgång]]}}
 
{{Not selected tab|[[Övningar till Potenser|Övningar]]}}
 
{{Not selected tab|[[Övningar till Potenser|Övningar]]}}
Rad 8: Rad 8:
  
  
<!-- [[Media: Lektion 9 Potenslagarna.pdf|Lektion 9 Potenser]] -->
+
__NOTOC__  <!-- __TOC__ -->
 +
== <b><span style="color:#931136">Vad är en potens?</span></b> ==
 +
<div class="exempel">
 +
[[Image: Hur raknar du Potenser 20.jpg]]
 +
:<math> {\rm {\color{Red} {OBS!\quad Vanligt\,fel:}}} \quad\; 2\,^3 \; = \; 6 </math>
  
__TOC__
+
:<math> \qquad\quad\;\, {\rm Rätt:} \qquad\qquad\! 2\,^3 \; = \; 2 \cdot 2 \cdot 2 \; = \; 4 \cdot 2 \; = \; 8 </math>
 +
</div>  <!-- exempel -->
  
 +
<div class="tolv"> <!-- tolv1 -->
 +
Felet beror på att man blandar ihop två olika räkneoperationer: multiplikationen med <strong><span style="color:red">upphöjt till</span></strong>.
  
== Potensbegreppet ==
+
Hjärnan associerar <math> \, 2 \, </math> och <math> \, 3 \, </math> blind till multiplikationstabellen vilket ger <math> \, 6 \, </math>.
  
Ett uttryck av formen <math> a^x\, </math> läses <strong><span style="color:red">"a upphöjt till x"</span></strong> och kallas <strong><span style="color:red">potens</span></strong>. <math> a\, </math> heter <strong><span style="color:red">basen</span></strong> och <math> x\, </math> <strong><span style="color:red">exponenten</span></strong>.
+
I själva verket betyder <math> \, 2\,^{\color{Red} 3} \, </math> inte <math> \, 2 \cdot 3 \, </math> utan <math> \, \underbrace{2 \cdot 2 \cdot 2}_{{\color{Red} 3}\;\times} \, </math> och är en:
 +
</div> <!-- tolv1 -->
  
Om exponenten <math> x\, </math> är ett positivt heltal och basen <math> a\, </math> ett tal <math> \neq 0 </math> kan potensen <math> a^x\, </math> definieras som en förkortning för <strong><span style="color:red">upprepad multiplikation</span></strong> av <math> a\, </math> med sig själv <math> x\, </math> gånger:
+
<table>
 +
<tr>
 +
  <td><div class="border-divblue"><big>
 +
<b>Potens</b>
  
::<math> a^x = \underbrace{a \cdot a \cdot a \cdot \quad \ \cdots \quad \cdot a}_{x\;\times} </math>
+
::<math> 2\,^{\color{Red} 3} \; = \;\; \underbrace{2 \, \cdot \, 2 \, \cdot \, 2}_{{\color{Red} 3}\;\times} </math>  
  
Exempel:
+
<b>Upprepad multiplikation av </b>
::::<math> a^2 = a \cdot a </math>
+
  
::::<math> a^3 = a \cdot a \cdot a </math>
+
<b><math>2 \, </math> med sig själv, <math> \, {\color{Red} 3} \, </math> gånger.</b>
 +
</big></div>
 +
</td>
 +
  <td>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;[[Image: Potens Bas Exponent_80.jpg]]</td>
 +
</tr>
 +
</table>
  
Om vi nu multiplicerar dessa två potenser med varandra och använder potensens definition, får vi:
 
  
::::<math> a^2 \cdot a^3 \; = \; \underbrace{a \cdot a}_{2} \; \cdot \; \underbrace{a \cdot a \cdot a}_{3} \; = \; \underbrace{a \cdot a \cdot a \cdot a \cdot a}_{5} \; = \; a^5</math>
+
<div class="tolv"> <!-- tolv2 -->
 +
<math> \, 2\,^3 \, </math> läses <math> \, {\color{Red} 2} </math> <strong><span style="color:red">upphöjt till</span></strong><math> \, {\color{Red} 3} \, </math> och kallas för &nbsp;<strong><span style="color:red">potens</span></strong>. <math> \, 2\, </math> heter <strong><span style="color:red">basen</span></strong> och <math> \, 3 \, </math> <strong><span style="color:red">exponenten</span></strong>.
  
Vi kan sammanfatta till:
+
Exponenten <math> \, {\color{Red} 3} \, </math> är inget tal i vanlig bemärkelse utan endast en information om att <math> \, 2 \, </math> ska multipliceras <math> \, {\color{Red} 3} \, </math> gånger med sig själv  (jfr. [[1.2_Räkneordning#Varf.C3.B6r_g.C3.A5r_multiplikation_f.C3.B6re_addition.3F|<strong><span style="color:blue">upprepad addition</span></strong>]]).
 +
</div> <!-- tolv2 -->
  
::::<math> a^2 \cdot a^3 \; = \; a^{2+3} = \; a^5</math>
 
  
Detta är ett exempel på en allmän lag, den första potenslagen:
+
<div class="exempel"> <!-- exempel1 -->
 +
== <b><span style="color:#931136">Exempel 1</span></b> ==
 +
<big>
 +
Förenkla<span style="color:black">:</span> <math> \qquad \displaystyle{2\,^3 \cdot \; 2\,^5 \over 2\,^4} </math>
  
:::::<math> a^x \cdot a^y \; = \; a^{x+y} </math>
 
  
Det finns flera sådana:
+
<strong><span style="color:#931136">Lösning:</span></strong> <math> \qquad \displaystyle{{2\,^3 \cdot \; 2\,^5 \over 2\,^4} \, = \, {2 \cdot 2 \cdot 2 \quad \cdot \quad 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \over 2 \cdot 2 \cdot 2 \cdot 2} \, = \, {2 \cdot 2 \cdot 2 \quad \cdot \quad 2 \cdot \cancel{2 \cdot 2 \cdot 2 \cdot 2} \over \cancel{2 \cdot 2 \cdot 2 \cdot 2}} \, = \, 2 \cdot 2 \cdot 2 \cdot 2 \, = \, 4 \cdot 4 \, = \, 16} </math>
  
 +
:::::::::::::::::OBS! &nbsp; Förenkla alltid först, räkna sedan!
  
== Potenslagarna ==
+
Snabbare<span style="color:black">:</span> <math> \qquad\!\! \displaystyle{{2\,^3 \cdot \; 2\,^5 \over 2\,^4} \, = \, 2\,^{3\,+\,5\,-\,4} \, = \, 2\,^4 \, = \, 2 \cdot 2 \cdot 2 \cdot 2 \, = \, 4 \cdot 4 \, = \, 16} </math>
 +
</big>
 +
</div>  <!-- exempel1 -->
  
Följande lagar gäller för potenser där basen <math> a\, </math> är ett tal <math> \neq 0 </math>, exponenterna <math> x\, </math> och <math> y\, </math> vilka rationella tal som helst och <math> m,\,n </math> heltal (<math> n\neq 0 </math>). Potenslagarna gäller även för exponenter som är negativa eller rationella (bråktal), även om vi inledningsvis definierade potensbegreppet för enkelhets skull endast för positiva heltalsexponenter:
 
  
[[Image: Potenslagarna_70a.jpg]]
+
<div class="tolv"> <!-- tolv2 -->
 +
För att förstå den snabbare lösningen se [[Potenser#Potenslagarna|<strong><span style="color:blue">potenslagarna</span></strong>]].
 +
</div> <!-- tolv2 -->
  
== Bevis av några potenslagar ==
 
  
'''Påstående (Produkt av potenser med samma bas)''':
+
== <b><span style="color:#931136">Potens med positiva heltalsexponenter</span></b> ==
 +
<div class="tolv"> <!-- tolv1 -->
  
:::::<math> a^x \cdot a^y \; = \; a^{x+y} </math>
+
Potensen <big><math> \, a\,^{\color{Red} x} \, </math></big> kan, om exponenten <math> \, {\color{Red} x} \, </math> är ett positivt heltal och basen <big><math> \, a \, </math></big> ett tal <math> \neq 0 </math>, definieras som
  
'''Bevis''':
+
::::::<b>Upprepad multiplikation av <big><math> \, a \, </math></big> med sig själv, <math> \, {\color{Red} x} \, </math> gånger:</b>
 +
 
 +
::::::::<big><math> a\,^{\color{Red} x} = \underbrace{a \cdot a \cdot a \cdot \quad \ \cdots \quad \cdot a}_{{\color{Red} x}\;{\rm gånger}} </math></big>
 +
</div> <!-- tolv1 -->
 +
 
 +
<div class="exempel"> <!-- exempel2 -->
 +
== <b><span style="color:#931136">Exempel 2</span></b> ==
 +
<big>
 +
Förenkla<span style="color:black">:</span> <big><math> \quad\;\; a\,^2 \, \cdot \, a\,^3 </math></big>
 +
 
 +
 
 +
<strong><span style="color:#931136">Lösning:</span></strong>
 +
 
 +
::::<big><math> a\,^2 \cdot a\,^3 \; = \; \underbrace{a \cdot a}_{2\;\times} \; \cdot \; \underbrace{a \cdot a \cdot a}_{3\;\times} \; = \; \underbrace{a \cdot a \cdot a \cdot a \cdot a}_{{\color{Red} 5}\;\times} \; = \; a\,^{\color{Red} 5}</math></big>
 +
 
 +
Snabbare:
 +
 
 +
::::<big><math> a\,^2 \cdot a\,^3 \; = \; a\,^{2\,+\,3} = \; a\,^{\color{Red} 5} </math></big>
 +
</big>
 +
</div> <!-- exempel2 -->
 +
 
 +
 
 +
<div class="tolv"> <!-- tolv2 -->
 +
Den snabbare lösningen är ett exempel på den första potenslagen:
 +
</div> <!-- tolv2 -->
 +
 
 +
 
 +
== <b><span style="color:#931136">Potenslagarna</span></b> ==
 +
<div class="tolv"> <!-- tolv3 -->
 +
 
 +
Följande lagar gäller för potenser där basen <math> a\, </math> är ett tal <math> \neq 0 </math>, exponenterna <math> \, x \, </math> och <math> \, y \, </math> godtyckliga tal och <math> m,\,n </math> heltal (<math> n\neq 0 </math>):
 +
</div> <!-- tolv3 -->
 +
 
 +
 
 +
<div class="border-divblue"><big>
 +
<b><span style="color:#931136">Första potenslagen:</span></b> <big><math> \qquad\qquad\quad\;\, a^x \cdot a^y \; = \; a\,^{x \, + \, y} \qquad\qquad </math></big>
 +
----
 +
<b><span style="color:#931136">Andra potenslagen:</span></b> <big><math> \qquad\qquad\qquad\quad \displaystyle {a^x \over a^y} \; = \; a\,^{x \, - \, y} \qquad\qquad </math></big>
 +
----
 +
<b><span style="color:#931136">Tredje potenslagen:</span></b> <big><math> \qquad\qquad\qquad \displaystyle {(a^x)^y} \; = \; a\,^{x \, \cdot \, y} \qquad\qquad </math></big>
 +
----
 +
<b><span style="color:#931136">Lagen om nollte potens:</span></b> <big><math> \qquad\qquad\qquad\! a\,^0 \; = \; 1 \qquad\qquad </math></big>
 +
----
 +
<b><span style="color:#931136">Lagen om negativ exponent:</span></b> <big><math> \qquad\qquad a\,^{-x} \; = \; \displaystyle {1 \over a\,^x} \qquad\qquad </math></big>
 +
----
 +
<b><span style="color:#931136">Lagen om rationell exponent:</span></b> <big><math> \qquad\qquad a^{m \over n} \; = \; \sqrt[n]{a^m} \qquad\qquad </math></big>
 +
 
 +
<b><span style="color:#931136">Specialfall <small><math>m=1</math></small> (högre rötter):</span></b> <big><math> \qquad\quad\;\, a^{1 \over n} \; = \; \sqrt[n]{a} \qquad\qquad </math></big>
 +
----
 +
<b><span style="color:#931136">Potens av en produkt:</span></b> <big><math> \qquad\qquad\;\;\, (a \cdot b)\,^x \; = \; a\,^x \cdot b\,^x \qquad\qquad </math></big>
 +
----
 +
<b><span style="color:#931136">Potens av en kvot:</span></b> <big><math> \qquad\qquad\qquad \left(\displaystyle {a \over b}\right)^x \; = \; \displaystyle {a\,^x \over b\,^x} \qquad\qquad </math></big>
 +
</big></div> <!-- border-divblue -->
 +
 
 +
 
 +
<div class="tolv"> <!-- tolv3a -->
 +
För enkelhets skull definierades potensbegreppet inledningsvis endast för positiva heltalsexponenter <math> \, x \, </math> och <math> \, y </math>. Men potenslagarna gäller även för negativa och [[Potenser#Potenser_med_rationella_exponenter|<strong><span style="color:blue">rationella exponenter</span></strong>]]. I formuleringen "negativ exponent" antas <math> \, x > 0 </math>.
 +
</div> <!-- tolv3a -->
 +
 
 +
 
 +
== <b><span style="color:#931136">Bevis(idéer) och exempel för några potenslagar</span></b> ==
 +
<div class="tolv"> <!-- tolv4 -->
 +
 
 +
'''Påstående (Första potenslagen)''':
 +
 
 +
::::<big><math> a\,^x \cdot a\,^y \; = \; a\,^{x \, + \, y} </math></big>
 +
 
 +
'''Bevisidé''':
  
 
Påståendet kan bevisas genom att använda potensens definition:
 
Påståendet kan bevisas genom att använda potensens definition:
  
:::::<math> a^x \cdot a^y \; = \; \underbrace{a \cdot a \cdot \; \ \cdots \; \cdot a}_{x} \; \cdot \; \underbrace{a \cdot a \cdot \; \ \cdots \; \cdot a}_{y} \; = \; \underbrace{a \cdot a \cdot \; \ \cdots \; \cdot a}_{x+y} \; = \; a^{x+y} </math>
+
::::<big><math> a\,^{\color{Red} x} \cdot a\,^{\color{Red} y} \; = \; \underbrace{a \cdot a \cdot \; \ \cdots \; \cdot a}_{{\color{Red} x}\;\times} \; \cdot \; \underbrace{a \cdot a \cdot \; \ \cdots \; \cdot a}_{{\color{Red} y}\;\times} \; = \; \underbrace{a \cdot a \cdot \; \ \cdots \; \cdot a}_{{\color{Red} {x\,+\,y}}\;\times} \; = \; a\,^{{\color{Red} {x\,+\,y}}} </math></big>
  
 
----
 
----
  
'''Påstående (Nollte potens)''':
 
  
:::::<math> a^0 \; = \; 1 </math>
+
'''Påstående (Andra potenslagen)''':
 +
 
 +
::::<big><math> \displaystyle {a\,^x \over a\,^y} \; = \; a\,^{x \, - \, y} </math></big>
 +
</div> <!-- tolv1 -->
 +
 
 +
 
 +
<div class="exempel"> <!-- exempel3 -->
 +
== <b><span style="color:#931136">Exempel 3</span></b> ==
 +
<big>
 +
 
 +
::::<big><math> \displaystyle {a\,^{\color{Red} 5} \over a\,^{\color{Red} 3}} \; = \; {a \cdot a \cdot a \cdot a \cdot a \; \over \; a \cdot a \cdot a} \; = \; {a \cdot a \cdot \cancel{a \cdot a \cdot a} \; \over \; \cancel{a \cdot a \cdot a}} \; = \; a \cdot a \; = \; a\,^2 </math></big>
 +
 
 +
Snabbare med andra potenslagen:
 +
 
 +
::::<big><math> \displaystyle {a\,^{\color{Red} 5} \over a\,^{\color{Red} 3}} \; = \; a\,^{{\color{Red} {5\,-\,3}}} \; = \; a\,^2 </math></big>
 +
</big>
 +
</div> <!-- exempel3 -->
 +
 
 +
 
 +
<div class="tolv"> <!-- tolv2 -->
 +
'''Påstående (Lagen om nollte potens)''':
 +
 
 +
::::<big><math> a^0 \; = \; 1 </math></big>
  
 
'''Bevis''':
 
'''Bevis''':
  
Påståendet kan bevisas genom att använda potenslagen för division av potenser med samma bas:
+
Påståendet kan bevisas genom att använda andra potenslagen:
  
:::::<math> a^0 \; = \; a^{x-x} \; = \; {a^x \over a^x} \; = \; 1 </math>
+
::::<big><math> \displaystyle{a^x \over a^x} \; = \; a^{x-x} \; = \; a^0 </math></big>
  
----
+
Å andra sidan vet vi att ett bråk med samma täljare som nämnare har värdet <math> \, 1 </math>:
 +
 
 +
::::<big><math> \displaystyle{a^x \over a^x} \; = \; 1 </math></big>
 +
 
 +
Av raderna ovan följer påståendet:
 +
 
 +
::::<big><math> a^0 \; = \; 1 </math></big>
 +
</div> <!-- tolv4 -->
 +
 
 +
 
 +
== <b><span style="color:#931136">Potenser med negativa exponenter</span></b> ==
 +
<div class="tolv"> <!-- tolv4a -->
  
'''Påstående (Negativ exponent)''':
+
'''Påstående (Lagen om negativ exponent, <math> \, x > 0 </math>)''':
  
:::::<math> a^{-x} = {1 \over a^x} </math>
+
::::<big><math> a^{-x} = \displaystyle{1 \over a^x} </math></big>
  
 
'''Bevis''':
 
'''Bevis''':
  
Påståendet kan bevisas genom att använda den ovan bevisade lagen för nollte potensen (bakifrån) samt lagen om division av potenser med samma bas:
+
Påståendet kan bevisas genom att använda den ovan bevisade lagen om nollte potensen (baklänges) samt andra potenslagen:
  
:::::<math> {1 \over a^x} \; = \; {a^0 \over a^x} \; = \; a^{0-x} \; = \; a^{-x} </math>
+
::::<big><math> \displaystyle{1 \over a^x} \; = \; \displaystyle{a^0 \over a^x} \; = \; a^{0-x} \; = \; a^{-x} </math></big>
  
 
Vi får påståendet, fast baklänges.  
 
Vi får påståendet, fast baklänges.  
 +
</div> <!-- tolv4a -->
  
'''Exempel''':
 
  
::::<math> a^{-1} = {1 \over a^1} = {1 \over a} </math>
+
<div class="exempel"> <!-- exempel4 -->
 +
== <b><span style="color:#931136">Exempel på potenser med negativa exponenter</span></b> ==
 +
<big>
  
::::<math> a^{-2} = {1 \over a^2} = {1 \over a \cdot a} </math>
+
::::<big><math> \displaystyle{a^{-1} \, = \, {1 \over a^1} \, = \, {1 \over a}} </math></big>
  
::::<math> a^{-3} = {1 \over a^3} = {1 \over a \cdot a \cdot a} </math>
 
  
Följande exempel illustrerar övergången från positiva till negativa exponenter med nollte potensen däremellan:
+
::::<big><math> \displaystyle{a^{-2} \, = \, {1 \over a^2} \, = \, {1 \over a \cdot a}} </math></big>
  
[[Image: Potens_Ex_60.jpg]]
 
  
----
+
::::<big><math> \displaystyle{a^{-3} \, = \, {1 \over a^3} \, = \, {1 \over a \cdot a \cdot a}} </math></big>
 +
</big>
 +
</div> <!-- exempel4 -->
 +
 
 +
 
 +
<div class="tolv"> <!-- tolv5 -->
 +
Att potenser med negativa exponenter är en naturlig fortsättning på potenser med positiva exponenter med nollte potensen däremellan illustrerar följande exempel:
 +
</div> <!-- tolv5 -->
 +
 
 +
 
 +
<div class="exempel"> <!-- exempel4 -->
 +
== <b><span style="color:#931136">Varför är <math> \; 5\,^0 \, = \, 1 \; </math>?</span></b> ==
 +
<big>
 +
 
 +
::::<math> \;\; 5^4 \; = \; {\color{Red} 1} \cdot 5 \cdot 5 \cdot 5 \cdot 5 </math>
 +
 
 +
::::<math> \;\; 5^3 \; = \; {\color{Red} 1} \cdot 5 \cdot 5 \cdot 5 </math>
 +
 
 +
::::<math> \;\; 5^2 \; = \; {\color{Red} 1} \cdot 5 \cdot 5 </math>
 +
 
 +
::::<math> \;\; 5^1 \; = \; {\color{Red} 1} \cdot 5 </math>
 +
 
 +
::::<math> \;\; {\color{Red} {5^0 \; = \; 1}} </math>
 +
 
 +
::::<math> \;\; 5^{-1} \; = \; \displaystyle{{\color{Red} 1} \over 5} </math>
 +
 
 +
::::<math> \;\; 5^{-2} \; = \; \displaystyle{{\color{Red} 1} \over 5 \cdot 5} </math>
 +
 
 +
::::<math> \;\; 5^{-3} \; = \; \displaystyle{{\color{Red} 1} \over 5 \cdot 5 \cdot 5} </math>
 +
 
 +
::::<math> \;\; 5^{-4} \; = \; \displaystyle{{\color{Red} 1} \over 5 \cdot 5 \cdot 5 \cdot 5 } </math>
 +
 
 +
Att <math> \; {\color{Red} 1} </math>-orna följer med hela tiden beror på att multiplikationens ''enhet'' är <math> \, {\color{Red} 1} </math>, dvs <math> \, a \cdot {\color{Red} 1} \, = \, a </math>. Därför blir endast <math> \, {\color{Red} 1} \, </math> kvar, när vi kommer till <math> \, {\color{Red} {5^0}} \, </math> då alla <math> \, 5</math>-or har försvunnit.
 +
</big>
 +
</div> <!-- exempel4 -->
 +
 
 +
 
 +
<div class="tolv"> <!-- tolv5 -->
 +
Jämför med:
 +
</div> <!-- tolv5 -->
 +
 
 +
 
 +
<div class="exempel"> <!-- exempel5 -->
 +
== <b><span style="color:#931136">Varför är <math> \; 5 \cdot 0 \, = \, 0 \; </math>?</span></b> ==
 +
<big>
 +
 
 +
::::<math> \;\; 5 \cdot 4 \; = \; {\color{Red} 0} + 5 + 5 + 5 + 5 </math>
 +
 
 +
::::<math> \;\; 5 \cdot 3 \; = \; {\color{Red} 0} + 5 + 5 + 5 </math>
 +
 
 +
::::<math> \;\; 5 \cdot 2 \; = \; {\color{Red} 0} + 5 + 5 </math>
 +
 
 +
::::<math> \;\; 5 \cdot 1 \; = \; {\color{Red} 0} + 5 </math>
 +
 
 +
::::<math> \;\; {\color{Red} {5 \cdot 0 \; = \; 0}} </math>
 +
 
 +
::::<math> \;\; 5 \cdot (-1) \; = \; {\color{Red} 0} - 5 </math>
 +
 
 +
::::<math> \;\; 5 \cdot (-2) \; = \; {\color{Red} 0} - 5 - 5 </math>
 +
 
 +
::::<math> \;\; 5 \cdot (-3) \; = \; {\color{Red} 0} - 5 - 5 - 5 </math>
 +
 
 +
::::<math> \;\; 5 \cdot (-4) \; = \; {\color{Red} 0} - 5 - 5 - 5 - 5 </math>
 +
 
 +
Att <math> \; {\color{Red} 0} </math>-orna följer med hela tiden beror på att additionens ''enhet'' är <math> \, {\color{Red} 0} </math>, dvs <math> \, a + {\color{Red} 0} \, = \, a </math>. Därför blir endast <math> \, {\color{Red} 0} \, </math> kvar, när vi kommer till <math> \, {\color{Red} {5 \cdot 0}} \, </math> då alla <math> \, 5</math>-or har försvunnit.
 +
</big>
 +
</div> <!-- exempel5 -->
 +
 
 +
 
 +
== <b><span style="color:#931136">Potenser med rationella exponenter</span></b> ==
 +
<div class="tolv"> <!-- tolv6 -->
 +
Potenser med exponenter som är [[1.1_Om_tal#Olika_typer_av_tal|rationella tal]] (bråktal) kan användas för att beräkna (högre) rötter.
 +
 
  
'''Påstående (Rationell exponent)''':
+
'''Påstående (högre rötter)''':
  
:::<big><big><math> a^{m \over n} \; = \; \sqrt[n]{a^m} </math></big></big>
+
:::<big><math> a^{1 \over n} \; = \; \sqrt[n]{a} \; </math></big> <math> , \qquad n\neq 0 </math>
  
 
'''Bevisidé''':
 
'''Bevisidé''':
  
Vi tar specialfallet <math> m=1 </math> och <math> n=3 </math>, multiplicerar <math> a </math><big><big><math>^{1 \over 3} </math></big></big> tre gånger med sig själv och använder potenslagen om produkt av potenser med samma bas:
+
Vi tar specialfallet <math> n=3 </math>, multiplicerar <math> a </math><big><math>^{1 \over 3} </math></big> tre gånger med sig själv och använder potenslagen om produkt av potenser med samma bas:
  
:::<big><big><math> a^{1 \over 3} \cdot a^{1 \over 3} \cdot a^{1 \over 3} \; = \; a^{{1 \over 3} + {1 \over 3} + {1 \over 3}} \; = \; a^{3 \over 3} \; = \; a^1 \; = \; a </math></big></big>
+
:::<big><math> \displaystyle a^{1 \over 3} \cdot a^{1 \over 3} \cdot a^{1 \over 3} \; = \; a^{{1 \over 3} + {1 \over 3} + {1 \over 3}} \; = \; a^{3 \over 3} \; = \; a^1 \; = \; a </math></big>
  
Definitionen för 3:e roten ur <math> a </math> är:
+
Definitionen för 3:e roten ur <math> a </math> är<span style="color:black">:</span>
  
::<big><big><math>\sqrt[3]{a} \; = {\color{White} x} </math></big></big> <big>Tal som 3 gånger multiplicerat med sig själv ger a.</big>
+
<big><math> \qquad\quad \displaystyle \sqrt[3]{a} \; = \; </math></big> Tal som 3 gånger multiplicerat med sig själv ger <math> a </math>.
  
Men enligt ovan är det tal som 3 gånger med sig själv ger <math> a </math>, just <math> a </math><big><big><math>^{1 \over 3} </math></big></big>. Alltså måste detta tal vara lika med 3:e roten ur <math> a </math>:
+
Men enligt ovan är det tal som 3 gånger med sig själv ger <math> a </math>, just <math> a </math> <big><math>^{1 \over 3} </math></big>. Alltså måste detta tal vara lika med 3:e roten ur <math> a </math>:
  
:::<big><big><math> a^{1 \over 3} \; = \; \sqrt[3]{a} </math></big></big>
+
:::<big><math> \displaystyle a^{1 \over 3} \; = \; \sqrt[3]{a} </math></big>
  
Denna bevisidé kan vidareutvecklas till det allmänna fallet för alla heltal <math> m\, </math> och <math> n\neq 0 </math>.
+
Denna bevisidé kan vidareutvecklas till det allmänna fallet för alla heltal <math> m\, </math> och <math> n\neq 0 \, </math> '''(Lagen om rationell exponent)''':
  
 +
:::<big><math> a^{m \over n} \; = \; \sqrt[n]{a^m} </math></big>
 +
</div> <!-- tolv6 -->
  
== Potensekvationer ==
 
  
Anta i fortsättningen att <math> x\, </math> är en okänd variabel och <math> b\, </math> och <math> c\, </math> givna konstanter <math> \neq 0 </math> .
+
== <b><span style="color:#931136">Potensekvationer</span></b> ==
 +
<div class="tolv"> <!-- tolv7 -->
  
::Funktioner av typ <math> y = x^3\, </math> kallas <strong><span style="color:red">potensfunktioner</span></strong>, generellt <math> {\color{White} x} y = c \cdot x^b\, </math>.
+
Anta i fortsättningen att <math> \, x \, </math> är en okänd variabel och <math> b\, </math> och <math> c\, </math> givna konstanter <math> \neq 0 </math> .  
  
::Ekvationer av typ <math> x^3\, = 8 </math> kallas <strong><span style="color:red">potensekvationer</span></strong>, generellt <math> {\color{White} x} x^b\, = c </math>.
+
::Funktioner av typ <math> y = x^3\, </math> kallas <strong><span style="color:red">potensfunktioner</span></strong>, generellt <math> \; y = c \cdot x^b\, </math>.
  
I potensfunktioner och -ekvationer förekommer x i basen. Potensekvationer löses genom <strong><span style="color:red">rotdragning</span></strong>. För t.ex. potensekvationen <math> x^3\, = 8 </math> finns det två olika sätt att beskriva lösningen via rotdragning:
+
::Ekvationer av typ <math> x^3\, = 8 </math> kallas <strong><span style="color:red">potensekvationer</span></strong>, generellt <math> \; x^b\, = c </math>.
 +
 
 +
I potensfunktioner och -ekvationer förekommer <math> \, x \, </math> i basen. Potensekvationer löses genom <strong><span style="color:red">rotdragning</span></strong>. För t.ex. potensekvationen <math> x^3\, = 8 </math> finns det två olika sätt att beskriva lösningen via rotdragning:
  
 
:::<math>\begin{align} x^3 & = 8  \qquad  & | \; \sqrt[3]{\;\;} \\
 
:::<math>\begin{align} x^3 & = 8  \qquad  & | \; \sqrt[3]{\;\;} \\
Rad 135: Rad 331:
 
                   \end{align}</math>
 
                   \end{align}</math>
  
Alternativt (med bråktal som exponent):
+
Alternativt (med rationell exponent):
  
 
:::<math>\begin{align} x^3 & = 8  \qquad  & | \; (\;\;\;)^{1 \over 3} \; \text{samma som} \; \sqrt[3]{\;\;} \\
 
:::<math>\begin{align} x^3 & = 8  \qquad  & | \; (\;\;\;)^{1 \over 3} \; \text{samma som} \; \sqrt[3]{\;\;} \\
Rad 143: Rad 339:
 
                   \end{align}</math>
 
                   \end{align}</math>
  
Det alternativa sättet att lösa ekvationen <math> x^3 = 8\, </math> visar att rötter även kan uppfattas och skrivas som <strong><span style="color:red">potenser med rationella exponenter</span></strong>, se avsnittet ovan.
+
Det alternativa sättet att lösa ekvationen ovan visar att rötter även kan uppfattas och skrivas som [[Potenser#Potenser_med_rationella_exponenter|<strong><span style="color:blue">potenser med rationella exponenter</span></strong>]].
 +
</div> <!-- tolv7 -->
  
  
Rad 158: Rad 355:
  
  
== Internetlänkar ==
+
 
 +
== <b><span style="color:#931136">Internetlänkar</span></b> ==
  
 
http://www.youtube.com/watch?v=iYgG4LUqXks
 
http://www.youtube.com/watch?v=iYgG4LUqXks
Rad 175: Rad 373:
  
  
[[Matte:Copyrights|Copyright]] © 2011-2015 Taifun Alishenas. All Rights Reserved.
+
[[Matte:Copyrights|Copyright]] © 2010-2015 Math Online Sweden AB. All Rights Reserved.

Versionen från 24 juni 2015 kl. 16.32

       <-- Till Polynom          Genomgång          Övningar      


Vad är en potens?

Hur raknar du Potenser 20.jpg \[ {\rm {\color{Red} {OBS!\quad Vanligt\,fel:}}} \quad\; 2\,^3 \; = \; 6 \]

\[ \qquad\quad\;\, {\rm Rätt:} \qquad\qquad\! 2\,^3 \; = \; 2 \cdot 2 \cdot 2 \; = \; 4 \cdot 2 \; = \; 8 \]

Felet beror på att man blandar ihop två olika räkneoperationer: multiplikationen med upphöjt till.

Hjärnan associerar \( \, 2 \, \) och \( \, 3 \, \) blind till multiplikationstabellen vilket ger \( \, 6 \, \).

I själva verket betyder \( \, 2\,^{\color{Red} 3} \, \) inte \( \, 2 \cdot 3 \, \) utan \( \, \underbrace{2 \cdot 2 \cdot 2}_{{\color{Red} 3}\;\times} \, \) och är en:

Potens

\[ 2\,^{\color{Red} 3} \; = \;\; \underbrace{2 \, \cdot \, 2 \, \cdot \, 2}_{{\color{Red} 3}\;\times} \]

Upprepad multiplikation av

\(2 \, \) med sig själv, \( \, {\color{Red} 3} \, \) gånger.

           Potens Bas Exponent 80.jpg


\( \, 2\,^3 \, \) läses \( \, {\color{Red} 2} \) upphöjt till\( \, {\color{Red} 3} \, \) och kallas för  potens. \( \, 2\, \) heter basen och \( \, 3 \, \) exponenten.

Exponenten \( \, {\color{Red} 3} \, \) är inget tal i vanlig bemärkelse utan endast en information om att \( \, 2 \, \) ska multipliceras \( \, {\color{Red} 3} \, \) gånger med sig själv (jfr. upprepad addition).


Exempel 1

Förenkla: \( \qquad \displaystyle{2\,^3 \cdot \; 2\,^5 \over 2\,^4} \)


Lösning: \( \qquad \displaystyle{{2\,^3 \cdot \; 2\,^5 \over 2\,^4} \, = \, {2 \cdot 2 \cdot 2 \quad \cdot \quad 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \over 2 \cdot 2 \cdot 2 \cdot 2} \, = \, {2 \cdot 2 \cdot 2 \quad \cdot \quad 2 \cdot \cancel{2 \cdot 2 \cdot 2 \cdot 2} \over \cancel{2 \cdot 2 \cdot 2 \cdot 2}} \, = \, 2 \cdot 2 \cdot 2 \cdot 2 \, = \, 4 \cdot 4 \, = \, 16} \)

OBS!   Förenkla alltid först, räkna sedan!

Snabbare: \( \qquad\!\! \displaystyle{{2\,^3 \cdot \; 2\,^5 \over 2\,^4} \, = \, 2\,^{3\,+\,5\,-\,4} \, = \, 2\,^4 \, = \, 2 \cdot 2 \cdot 2 \cdot 2 \, = \, 4 \cdot 4 \, = \, 16} \)


För att förstå den snabbare lösningen se potenslagarna.


Potens med positiva heltalsexponenter

Potensen \( \, a\,^{\color{Red} x} \, \) kan, om exponenten \( \, {\color{Red} x} \, \) är ett positivt heltal och basen \( \, a \, \) ett tal \( \neq 0 \), definieras som

Upprepad multiplikation av \( \, a \, \) med sig själv, \( \, {\color{Red} x} \, \) gånger:
\( a\,^{\color{Red} x} = \underbrace{a \cdot a \cdot a \cdot \quad \ \cdots \quad \cdot a}_{{\color{Red} x}\;{\rm gånger}} \)

Exempel 2

Förenkla: \( \quad\;\; a\,^2 \, \cdot \, a\,^3 \)


Lösning:

\( a\,^2 \cdot a\,^3 \; = \; \underbrace{a \cdot a}_{2\;\times} \; \cdot \; \underbrace{a \cdot a \cdot a}_{3\;\times} \; = \; \underbrace{a \cdot a \cdot a \cdot a \cdot a}_{{\color{Red} 5}\;\times} \; = \; a\,^{\color{Red} 5}\)

Snabbare:

\( a\,^2 \cdot a\,^3 \; = \; a\,^{2\,+\,3} = \; a\,^{\color{Red} 5} \)


Den snabbare lösningen är ett exempel på den första potenslagen:


Potenslagarna

Följande lagar gäller för potenser där basen \( a\, \) är ett tal \( \neq 0 \), exponenterna \( \, x \, \) och \( \, y \, \) godtyckliga tal och \( m,\,n \) heltal (\( n\neq 0 \)):


Första potenslagen: \( \qquad\qquad\quad\;\, a^x \cdot a^y \; = \; a\,^{x \, + \, y} \qquad\qquad \)


Andra potenslagen: \( \qquad\qquad\qquad\quad \displaystyle {a^x \over a^y} \; = \; a\,^{x \, - \, y} \qquad\qquad \)


Tredje potenslagen: \( \qquad\qquad\qquad \displaystyle {(a^x)^y} \; = \; a\,^{x \, \cdot \, y} \qquad\qquad \)


Lagen om nollte potens: \( \qquad\qquad\qquad\! a\,^0 \; = \; 1 \qquad\qquad \)


Lagen om negativ exponent: \( \qquad\qquad a\,^{-x} \; = \; \displaystyle {1 \over a\,^x} \qquad\qquad \)


Lagen om rationell exponent: \( \qquad\qquad a^{m \over n} \; = \; \sqrt[n]{a^m} \qquad\qquad \)

Specialfall \(m=1\) (högre rötter): \( \qquad\quad\;\, a^{1 \over n} \; = \; \sqrt[n]{a} \qquad\qquad \)


Potens av en produkt: \( \qquad\qquad\;\;\, (a \cdot b)\,^x \; = \; a\,^x \cdot b\,^x \qquad\qquad \)


Potens av en kvot: \( \qquad\qquad\qquad \left(\displaystyle {a \over b}\right)^x \; = \; \displaystyle {a\,^x \over b\,^x} \qquad\qquad \)


För enkelhets skull definierades potensbegreppet inledningsvis endast för positiva heltalsexponenter \( \, x \, \) och \( \, y \). Men potenslagarna gäller även för negativa och rationella exponenter. I formuleringen "negativ exponent" antas \( \, x > 0 \).


Bevis(idéer) och exempel för några potenslagar

Påstående (Första potenslagen):

\( a\,^x \cdot a\,^y \; = \; a\,^{x \, + \, y} \)

Bevisidé:

Påståendet kan bevisas genom att använda potensens definition:

\( a\,^{\color{Red} x} \cdot a\,^{\color{Red} y} \; = \; \underbrace{a \cdot a \cdot \; \ \cdots \; \cdot a}_{{\color{Red} x}\;\times} \; \cdot \; \underbrace{a \cdot a \cdot \; \ \cdots \; \cdot a}_{{\color{Red} y}\;\times} \; = \; \underbrace{a \cdot a \cdot \; \ \cdots \; \cdot a}_{{\color{Red} {x\,+\,y}}\;\times} \; = \; a\,^{{\color{Red} {x\,+\,y}}} \)


Påstående (Andra potenslagen):

\( \displaystyle {a\,^x \over a\,^y} \; = \; a\,^{x \, - \, y} \)


Exempel 3

\( \displaystyle {a\,^{\color{Red} 5} \over a\,^{\color{Red} 3}} \; = \; {a \cdot a \cdot a \cdot a \cdot a \; \over \; a \cdot a \cdot a} \; = \; {a \cdot a \cdot \cancel{a \cdot a \cdot a} \; \over \; \cancel{a \cdot a \cdot a}} \; = \; a \cdot a \; = \; a\,^2 \)

Snabbare med andra potenslagen:

\( \displaystyle {a\,^{\color{Red} 5} \over a\,^{\color{Red} 3}} \; = \; a\,^{{\color{Red} {5\,-\,3}}} \; = \; a\,^2 \)


Påstående (Lagen om nollte potens):

\( a^0 \; = \; 1 \)

Bevis:

Påståendet kan bevisas genom att använda andra potenslagen:

\( \displaystyle{a^x \over a^x} \; = \; a^{x-x} \; = \; a^0 \)

Å andra sidan vet vi att ett bråk med samma täljare som nämnare har värdet \( \, 1 \):

\( \displaystyle{a^x \over a^x} \; = \; 1 \)

Av raderna ovan följer påståendet:

\( a^0 \; = \; 1 \)


Potenser med negativa exponenter

Påstående (Lagen om negativ exponent, \( \, x > 0 \)):

\( a^{-x} = \displaystyle{1 \over a^x} \)

Bevis:

Påståendet kan bevisas genom att använda den ovan bevisade lagen om nollte potensen (baklänges) samt andra potenslagen:

\( \displaystyle{1 \over a^x} \; = \; \displaystyle{a^0 \over a^x} \; = \; a^{0-x} \; = \; a^{-x} \)

Vi får påståendet, fast baklänges.


Exempel på potenser med negativa exponenter

\( \displaystyle{a^{-1} \, = \, {1 \over a^1} \, = \, {1 \over a}} \)


\( \displaystyle{a^{-2} \, = \, {1 \over a^2} \, = \, {1 \over a \cdot a}} \)


\( \displaystyle{a^{-3} \, = \, {1 \over a^3} \, = \, {1 \over a \cdot a \cdot a}} \)


Att potenser med negativa exponenter är en naturlig fortsättning på potenser med positiva exponenter med nollte potensen däremellan illustrerar följande exempel:


Varför är \( \; 5\,^0 \, = \, 1 \; \)?

\[ \;\; 5^4 \; = \; {\color{Red} 1} \cdot 5 \cdot 5 \cdot 5 \cdot 5 \]
\[ \;\; 5^3 \; = \; {\color{Red} 1} \cdot 5 \cdot 5 \cdot 5 \]
\[ \;\; 5^2 \; = \; {\color{Red} 1} \cdot 5 \cdot 5 \]
\[ \;\; 5^1 \; = \; {\color{Red} 1} \cdot 5 \]
\[ \;\; {\color{Red} {5^0 \; = \; 1}} \]
\[ \;\; 5^{-1} \; = \; \displaystyle{{\color{Red} 1} \over 5} \]
\[ \;\; 5^{-2} \; = \; \displaystyle{{\color{Red} 1} \over 5 \cdot 5} \]
\[ \;\; 5^{-3} \; = \; \displaystyle{{\color{Red} 1} \over 5 \cdot 5 \cdot 5} \]
\[ \;\; 5^{-4} \; = \; \displaystyle{{\color{Red} 1} \over 5 \cdot 5 \cdot 5 \cdot 5 } \]

Att \( \; {\color{Red} 1} \)-orna följer med hela tiden beror på att multiplikationens enhet är \( \, {\color{Red} 1} \), dvs \( \, a \cdot {\color{Red} 1} \, = \, a \). Därför blir endast \( \, {\color{Red} 1} \, \) kvar, när vi kommer till \( \, {\color{Red} {5^0}} \, \) då alla \( \, 5\)-or har försvunnit.


Jämför med:


Varför är \( \; 5 \cdot 0 \, = \, 0 \; \)?

\[ \;\; 5 \cdot 4 \; = \; {\color{Red} 0} + 5 + 5 + 5 + 5 \]
\[ \;\; 5 \cdot 3 \; = \; {\color{Red} 0} + 5 + 5 + 5 \]
\[ \;\; 5 \cdot 2 \; = \; {\color{Red} 0} + 5 + 5 \]
\[ \;\; 5 \cdot 1 \; = \; {\color{Red} 0} + 5 \]
\[ \;\; {\color{Red} {5 \cdot 0 \; = \; 0}} \]
\[ \;\; 5 \cdot (-1) \; = \; {\color{Red} 0} - 5 \]
\[ \;\; 5 \cdot (-2) \; = \; {\color{Red} 0} - 5 - 5 \]
\[ \;\; 5 \cdot (-3) \; = \; {\color{Red} 0} - 5 - 5 - 5 \]
\[ \;\; 5 \cdot (-4) \; = \; {\color{Red} 0} - 5 - 5 - 5 - 5 \]

Att \( \; {\color{Red} 0} \)-orna följer med hela tiden beror på att additionens enhet är \( \, {\color{Red} 0} \), dvs \( \, a + {\color{Red} 0} \, = \, a \). Därför blir endast \( \, {\color{Red} 0} \, \) kvar, när vi kommer till \( \, {\color{Red} {5 \cdot 0}} \, \) då alla \( \, 5\)-or har försvunnit.


Potenser med rationella exponenter

Potenser med exponenter som är rationella tal (bråktal) kan användas för att beräkna (högre) rötter.


Påstående (högre rötter):

\( a^{1 \over n} \; = \; \sqrt[n]{a} \; \) \( , \qquad n\neq 0 \)

Bevisidé:

Vi tar specialfallet \( n=3 \), multiplicerar \( a \)\(^{1 \over 3} \) tre gånger med sig själv och använder potenslagen om produkt av potenser med samma bas:

\( \displaystyle a^{1 \over 3} \cdot a^{1 \over 3} \cdot a^{1 \over 3} \; = \; a^{{1 \over 3} + {1 \over 3} + {1 \over 3}} \; = \; a^{3 \over 3} \; = \; a^1 \; = \; a \)

Definitionen för 3:e roten ur \( a \) är:

\( \qquad\quad \displaystyle \sqrt[3]{a} \; = \; \) Tal som 3 gånger multiplicerat med sig själv ger \( a \).

Men enligt ovan är det tal som 3 gånger med sig själv ger \( a \), just \( a \) \(^{1 \over 3} \). Alltså måste detta tal vara lika med 3:e roten ur \( a \):

\( \displaystyle a^{1 \over 3} \; = \; \sqrt[3]{a} \)

Denna bevisidé kan vidareutvecklas till det allmänna fallet för alla heltal \( m\, \) och \( n\neq 0 \, \) (Lagen om rationell exponent):

\( a^{m \over n} \; = \; \sqrt[n]{a^m} \)


Potensekvationer

Anta i fortsättningen att \( \, x \, \) är en okänd variabel och \( b\, \) och \( c\, \) givna konstanter \( \neq 0 \) .

Funktioner av typ \( y = x^3\, \) kallas potensfunktioner, generellt \( \; y = c \cdot x^b\, \).
Ekvationer av typ \( x^3\, = 8 \) kallas potensekvationer, generellt \( \; x^b\, = c \).

I potensfunktioner och -ekvationer förekommer \( \, x \, \) i basen. Potensekvationer löses genom rotdragning. För t.ex. potensekvationen \( x^3\, = 8 \) finns det två olika sätt att beskriva lösningen via rotdragning:

\[\begin{align} x^3 & = 8 \qquad & | \; \sqrt[3]{\;\;} \\ \sqrt[3]{x^3} & = \sqrt[3]{8} \\ x & = 2 \\ \end{align}\]

Alternativt (med rationell exponent):

\[\begin{align} x^3 & = 8 \qquad & | \; (\;\;\;)^{1 \over 3} \; \text{samma som} \; \sqrt[3]{\;\;} \\ (x^3)^{1 \over 3} & = 8^{1 \over 3} \\ x^{3\cdot{1 \over 3}} & = 8^{1 \over 3} \\ x & = 2 \\ \end{align}\]

Det alternativa sättet att lösa ekvationen ovan visar att rötter även kan uppfattas och skrivas som potenser med rationella exponenter.


Blandade exempel

Potens Ex 1.jpg


Potens Ex 2.jpg


Potens Ex 3.jpg


Internetlänkar

http://www.youtube.com/watch?v=iYgG4LUqXks

http://www.webbmatte.se/gym/arabiska/2/2_8_4sv.html

http://www.webbmatte.se/gym/arabiska/2/2_8_3sv.html

http://wiki.math.se/wikis/forberedandematte1/index.php/1.3_%C3%96vningar





Copyright © 2010-2015 Math Online Sweden AB. All Rights Reserved.