Skillnad mellan versioner av "Kapitel 5 Trigonometri"
Taifun (Diskussion | bidrag) m |
Taifun (Diskussion | bidrag) m |
||
Rad 1: | Rad 1: | ||
− | + | __NOTOC__ | |
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%" | {| border="0" cellspacing="0" cellpadding="0" height="30" width="100%" | ||
| style="border-bottom:1px solid #797979" width="5px" | | | style="border-bottom:1px solid #797979" width="5px" | |
Versionen från 5 april 2016 kl. 20.36
<-- Förra kapitel | Start Matte 3c | Planering Matte 3c | Formelsamling Trigonometri |
Utdrag ur planeringen:
5.1 Trigonometri i rätvinkliga trianglar
Genomgång: \( \qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\quad \) Övningar: Boken, sid 208
Tangens för \( \, v \, < \, 90^\circ \)
|
Exempel på tangens
Sinus och Cosinus för \( \, v \, < \, 90^\circ \)
5.2 Exakta trigonometriska värden / Enhetscirkeln
Genomgång: \( \qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\quad \) Övningar: Boken, sid 209 / 210
Två speciella vinklar: \( \, 45^\circ \, \) och \( \, 60^\circ \, \)
Pythagoras satsen används på halva kvadraten med sidan \( \, 1 \, \) för att få diagonalen \( \, \sqrt{2} \). Sedan bestäms \( \, \sin 45^\circ \, \) och \( \, \tan 45^\circ \):
På liknande sätt används Pythagoras på halva liksidiga triangeln med sidan \( \, 2 \, \) för att få höjden \( \, \sqrt{3} \). Sedan bestäms \( \, \sin 60^\circ \) och \( \, \cos 60^\circ \).
"Exakt" betyder: Gå inte över till decimaltal, dvs:
- Bibehåll bråk med endast heltal i täljare och nämnare,
- Bibehåll rötter som inte ger heltal.
En konsekvens blir att inte ens rötter ska stå kvar i bråkens nämnare. Ta upp dem genom förlängning med \( \, \sqrt{{\color{White} {\cdots}}} \), t.ex.:
- \[ \displaystyle \frac{1}{\sqrt{2}} \, = \, \frac{1 \, \cdot \, {\color{Red} {\sqrt{2}}}}{\sqrt{2} \cdot {\color{Red} {\sqrt{2}}}} \, = \, \frac{\sqrt{2}}{2} \, = \, \frac{1}{2} \, \sqrt{2} \]
Ytterligare exakta trigonometriska värden
Andra geometriska satser ger följande exakta värden:
Enhetscirkeln
Cirkel \( \, = \, \) Mängden av alla punkter som har samma avstånd (radien \( \, r \, \)) från en punkt (medelpunkten \( \, M \, \)).
Cirkelns ekvation:
Enhetscirkeln är cirkeln med radien \( \, r \, = \, 1 \, \) och medelpunkten \( \, M \, = \, O \, \) (origo).
Om en punkt \( \, P\,(x, y) \, \) snurrar på enhetscirkeln och \( \, v \, \) är vinkeln mellan \( \, x\)-axeln och \( \, \overline{OP} \), så gäller:
\( \qquad\qquad\quad \) |
\(\begin{array}{rcl} x & = & \cos v \\
y & = & \sin v
\end{array}\)
|
I cirklar med radien \( \, r \, > \, 1 \, \) förblir vinkeln \( \, v \, \) den samma och därmed \( \, \cos v = \displaystyle \frac{r \cdot \; x}{r} = x \, \) och \( \, \sin v = \displaystyle \frac{r \cdot \; y}{r} = y \), precis som ovan.
Detta används för att definiera de trigonometriska funktionerna i godtyckliga trianglar, dvs för vinklar \( \, v \, \geq \, 90^\circ \, \).
5.3 Godtyckliga trianglar
Genomgång: \( \qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\quad \) Övningar: Boken, sid 215
Sinus och Cosinus för vinklar: \( \quad 90^\circ \, \leq \, v \, \leq \, 180^\circ \)
Exempel:
- \[ \sin 150^\circ \, = \, \sin (180^\circ - 30^\circ) \, = \, \sin 30^\circ \, = \, \frac{1}{2} \]
- \[ \cos 120^\circ \, = \, \cos (180^\circ - 60^\circ) \, = \, -\cos 60^\circ \, = \, -\frac{1}{2} \]
Förklaring med enhetscirkeln:
Punkten till vinkeln \( \, v \, \) har samma \( \, y\)-koordinat (\(=\sin v\)) som punkten till vinkeln \( \, 180-v \).
Punkten till vinkeln \( \, v \, \) har samma \( \, x\)-koordinat (\(=\cos v\)) som punkten till vinkeln \( \, 180-v \, \) med omvänt tecken.
Ekvationer
med Sin & Cos:
|
Sinus, Cosinus och Tangens för alla vinklar
5.4 Triangelsatserna: Areasatsen, Sinussatsen, Cosinussatsen
Genomgång: \( \qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\quad \) Övningar: Boken, sid 218
Areasatsen
Areasatsens formel ovan gäller endast för de standardbeteckningar som införts i figuren inledningsvis.
Samma gäller för alla formler som följer: Sinussatsen och Cosinussatsen.
5.5 Sinussatsen / Sinussatsens två fall
Genomgång: \( \qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\quad \) Övningar: Boken, sid 220 / 224-225
Sinussatsen
Sinussatsens två fall
5.6 Cosinussatsen
Genomgång: \( \qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\quad \) Övningar: Boken, sid 229-230
Cosinussatsen
Exempel på Cosinussatsen
5.7 Användning av trigonometri
Genomgång: \( \qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\quad \) Övningar: Boken, sid 232-233
Copyright © 2011-2016 Math Online Sweden AB. All Rights Reserved.