Skillnad mellan versioner av "2.5 Deriveringsregler"
Taifun (Diskussion | bidrag) m |
Taifun (Diskussion | bidrag) m |
||
Rad 10: | Rad 10: | ||
− | [[Media: Lektion 17 Deriveringsregler I Ruta.pdf|< | + | [[Media: Lektion 17 Deriveringsregler I Ruta.pdf|<b><span style="color:blue">Lektion 17 Deriveringsregler I</span></b>]] |
− | [[Media: Lektion 18 Deriveringsregler II Ruta.pdf|< | + | [[Media: Lektion 18 Deriveringsregler II Ruta.pdf|<b><span style="color:blue">Lektion 18 Deriveringsregler II</span></b>]] |
__NOTOC__ | __NOTOC__ | ||
<div class="tolv"> <!-- tolv1 --> | <div class="tolv"> <!-- tolv1 --> | ||
Rad 29: | Rad 29: | ||
då <math> \;\; f\,'(x) \; = \: 0 </math>. | då <math> \;\; f\,'(x) \; = \: 0 </math>. | ||
− | '''Bevis:''' Se [[2.5_Fördjupning_till_Deriveringsregler#Derivatan_av_en_konstant|< | + | '''Bevis:''' Se [[2.5_Fördjupning_till_Deriveringsregler#Derivatan_av_en_konstant|<b><span style="color:blue">Fördjupning: Derivatan av en konstant</span></b>]]. |
</div> | </div> | ||
Rad 56: | Rad 56: | ||
då <math> \;\; f\,'(x) \; = \; k </math> | då <math> \;\; f\,'(x) \; = \; k </math> | ||
− | '''Bevis:''' Se [[2.5_Fördjupning_till_Deriveringsregler#Derivatan_av_en_linjär_funktion|< | + | '''Bevis:''' Se [[2.5_Fördjupning_till_Deriveringsregler#Derivatan_av_en_linjär_funktion|<b><span style="color:blue">Fördjupning: Derivatan av en linjär funktion</span></b>]]. |
</div> | </div> | ||
Rad 86: | Rad 86: | ||
då <math> \;\; f\,'(x) \; = \; 2\,a\,x \, + \, b </math> | då <math> \;\; f\,'(x) \; = \; 2\,a\,x \, + \, b </math> | ||
− | '''Bevis:''' Se [[2.5_Fördjupning_till_Deriveringsregler#Derivatan_av_en_kvadratisk_funktion|< | + | '''Bevis:''' Se [[2.5_Fördjupning_till_Deriveringsregler#Derivatan_av_en_kvadratisk_funktion|<b><span style="color:blue">Fördjupning: Derivatan av en kvadratisk funktion</span></b>]]. |
</div> | </div> | ||
Rad 139: | Rad 139: | ||
<div class="tolv"> <!-- tolv3 --> | <div class="tolv"> <!-- tolv3 --> | ||
− | Denna regel är den < | + | Denna regel är den <b><span style="color:red">viktigaste formeln</span></b> för derivering av elementära funktioner. Alla deriveringsregler vi ställt upp hittills är specialfall av denna regel. |
− | Regeln gäller för < | + | Regeln gäller för <b><span style="color:red">ALLA exponenter</span></b> <big><math> {\color{Red} n} </math></big>, dvs inte bara för positiva (ex. 1) utan även för negativa heltalsexponenter (ex. 2) och t.o.m. för bråktal i exponenten (ex. 3). |
</div> <!-- tolv3 --> | </div> <!-- tolv3 --> | ||
Rad 150: | Rad 150: | ||
Derivera funktionen <math> f(x) = \displaystyle {1 \over x} </math> med hjälp av regeln om derivatan av en potens. | Derivera funktionen <math> f(x) = \displaystyle {1 \over x} </math> med hjälp av regeln om derivatan av en potens. | ||
− | Innan vi kan tillämpa denna regel måste vi omvandla <math> \displaystyle {1 \over x} </math> till en potens med hjälp av [[Potenser#Potenslagarna|< | + | Innan vi kan tillämpa denna regel måste vi omvandla <math> \displaystyle {1 \over x} </math> till en potens med hjälp av [[Potenser#Potenslagarna|<b><span style="color:blue">Potenslagarna</span></b>]]<span style="color:black">:</span> |
− | <math> \qquad \displaystyle f(x) = {1 \over x} = x^{-1} \; </math> , se [[Potenser#Lagen_om_negativ_exponent_.5C.28_.5Cquad_a.5C.2C.5E.7B-x.7D_.5C.3B_.3D_.5C.3B_.5Cdisplaystyle_.7B1_.5Cover_a.5C.2C.5Ex.7D_.5C.29|< | + | <math> \qquad \displaystyle f(x) = {1 \over x} = x^{-1} \; </math> , se [[Potenser#Lagen_om_negativ_exponent_.5C.28_.5Cquad_a.5C.2C.5E.7B-x.7D_.5C.3B_.3D_.5C.3B_.5Cdisplaystyle_.7B1_.5Cover_a.5C.2C.5Ex.7D_.5C.29|<b><span style="color:blue">Lagen om negativ exponent</span></b>]]. |
Därmed är <math> \,n = -1 </math> och vi kan sätta in <math> \, n = -1 </math> i regeln om derivatan av en potens och får<span style="color:black">:</span> | Därmed är <math> \,n = -1 </math> och vi kan sätta in <math> \, n = -1 </math> i regeln om derivatan av en potens och får<span style="color:black">:</span> | ||
Rad 161: | Rad 161: | ||
<big> | <big> | ||
− | Även i den sista likheten i raden ovan har [[Potenser#Lagen_om_negativ_exponent_.5C.28_.5Cquad_a.5C.2C.5E.7B-x.7D_.5C.3B_.3D_.5C.3B_.5Cdisplaystyle_.7B1_.5Cover_a.5C.2C.5Ex.7D_.5C.29|< | + | Även i den sista likheten i raden ovan har [[Potenser#Lagen_om_negativ_exponent_.5C.28_.5Cquad_a.5C.2C.5E.7B-x.7D_.5C.3B_.3D_.5C.3B_.5Cdisplaystyle_.7B1_.5Cover_a.5C.2C.5Ex.7D_.5C.29|<b><span style="color:blue">Lagen om negativ exponent</span></b>]] använts. |
</big> | </big> | ||
Rad 172: | Rad 172: | ||
Innan vi kan tillämpa denna regel måste vi omvandla <math> \sqrt{x} </math> till en potens<span style="color:black">:</span> | Innan vi kan tillämpa denna regel måste vi omvandla <math> \sqrt{x} </math> till en potens<span style="color:black">:</span> | ||
− | <math> \qquad \displaystyle f(x) = \sqrt{x} = x\,^{1 \over 2} \; </math> , se [[Potenser#Lagen_om_kvadratroten_.5C.28_.5Cquad_a.5E.7B1_.5Cover_2.7D_.5C.3B_.3D_.5C.3B_.5Csqrt.7Ba.7D_.5C.29|< | + | <math> \qquad \displaystyle f(x) = \sqrt{x} = x\,^{1 \over 2} \; </math> , se [[Potenser#Lagen_om_kvadratroten_.5C.28_.5Cquad_a.5E.7B1_.5Cover_2.7D_.5C.3B_.3D_.5C.3B_.5Csqrt.7Ba.7D_.5C.29|<b><span style="color:blue">Lagen om kvadratroten</span></b>]]. |
Därmed är <math> n = {1 \over 2} </math> och vi kan sätta in <math> n = {1 \over 2} </math> i regeln om derivatan av en potens och får<span style="color:black">:</span> | Därmed är <math> n = {1 \over 2} </math> och vi kan sätta in <math> n = {1 \over 2} </math> i regeln om derivatan av en potens och får<span style="color:black">:</span> | ||
Rad 181: | Rad 181: | ||
<big> | <big> | ||
− | Även i den näst sista likheten i raden ovan har [[Potenser#Lagen_om_kvadratroten_.5C.28_.5Cquad_a.5E.7B1_.5Cover_2.7D_.5C.3B_.3D_.5C.3B_.5Csqrt.7Ba.7D_.5C.29|< | + | Även i den näst sista likheten i raden ovan har [[Potenser#Lagen_om_kvadratroten_.5C.28_.5Cquad_a.5E.7B1_.5Cover_2.7D_.5C.3B_.3D_.5C.3B_.5Csqrt.7Ba.7D_.5C.29|<b><span style="color:blue">Lagen om kvadratroten</span></b>]] använts. |
</big> | </big> | ||
Rad 210: | Rad 210: | ||
:::<math> y\,' \, = \,\, 6\cdot (\sqrt{x})\,' \,= \, 6\cdot {1 \over 2\,\sqrt{x}} \,= \, {6 \over 2\,\sqrt{x}} \,=\, {3 \over \sqrt{x}} </math> | :::<math> y\,' \, = \,\, 6\cdot (\sqrt{x})\,' \,= \, 6\cdot {1 \over 2\,\sqrt{x}} \,= \, {6 \over 2\,\sqrt{x}} \,=\, {3 \over \sqrt{x}} </math> | ||
− | Här har resultatet från Exempel 3 på [[2.5_Deriveringsregler#Derivatan_av_en_potens|< | + | Här har resultatet från Exempel 3 på [[2.5_Deriveringsregler#Derivatan_av_en_potens|<b><span style="color:blue">Derivatan av en potens</span></b>]] använts: |
::Derivatan av <math> f(x) = \sqrt{x} </math> är <math> f\,'(x) = \displaystyle {1 \over 2\, \sqrt{x}} </math> | ::Derivatan av <math> f(x) = \sqrt{x} </math> är <math> f\,'(x) = \displaystyle {1 \over 2\, \sqrt{x}} </math> | ||
Rad 239: | Rad 239: | ||
</table> | </table> | ||
<div class="tolv"> <!-- tolv2 --> | <div class="tolv"> <!-- tolv2 --> | ||
− | < | + | <b><span style="color:red">OBS! Konstanten</span></b> <big><math> {\color{Red} a} </math></big> tas oförändrad över till derivatan. |
− | Regeln om att [[2.5_Deriveringsregler#Derivatan_av_en_konstant|< | + | Regeln om att [[2.5_Deriveringsregler#Derivatan_av_en_konstant|<b><span style="color:blue">derivatan av en konstant</span></b>]] är <math> \, 0\, </math> får ingen tillämpning här, därför att konstanten <math> a\, </math> inte är en additiv term här utan bunden till produkten <math> a \cdot x\,^n </math> som en <b><span style="color:red">faktor</span></b> framför potensen och därför inte kan separeras från den: |
</div> <!-- tolv2 --> | </div> <!-- tolv2 --> | ||
Rad 247: | Rad 247: | ||
== <b><span style="color:#931136">Konstant faktor vs. additiv konstant</span></b> == | == <b><span style="color:#931136">Konstant faktor vs. additiv konstant</span></b> == | ||
<div class="tolv"> <!-- tolv5 --> | <div class="tolv"> <!-- tolv5 --> | ||
− | I funktionen <math> y \,=\, 6 \cdot \sqrt{x} </math> är <math> \, 6 </math> en < | + | I funktionen <math> y \,=\, 6 \cdot \sqrt{x} </math> är <math> \, 6 </math> en <b><span style="color:red">konstant faktor</span></b> i funktionsuttrycket. |
Derivatan blir <math> y' = 6\cdot \displaystyle {1 \over 2\,\sqrt{x}} = {6 \over 2\,\sqrt{x}} = {3 \over \sqrt{x}} </math> enligt regeln ovan: "En konstant faktor förblir oförändrad vid derivering". | Derivatan blir <math> y' = 6\cdot \displaystyle {1 \over 2\,\sqrt{x}} = {6 \over 2\,\sqrt{x}} = {3 \over \sqrt{x}} </math> enligt regeln ovan: "En konstant faktor förblir oförändrad vid derivering". | ||
− | I funktionen <math> y \,=\, 6 \,+\, \sqrt{x} </math> är <math> \, 6 </math> en < | + | I funktionen <math> y \,=\, 6 \,+\, \sqrt{x} </math> är <math> \, 6 </math> en <b><span style="color:red">additiv konstant</span></b> i funktionsuttrycket. |
Derivatan blir <math> y' = 0 \,+\, \displaystyle {1 \over 2\,\sqrt{x}} = {1 \over 2\,\sqrt{x}} </math> enligt regeln om att derivatan av en konstant är <math> \, 0\, </math>. | Derivatan blir <math> y' = 0 \,+\, \displaystyle {1 \over 2\,\sqrt{x}} = {1 \over 2\,\sqrt{x}} </math> enligt regeln om att derivatan av en konstant är <math> \, 0\, </math>. | ||
− | Att derivatan av en konstant är <math> 0\, </math> innebär < | + | Att derivatan av en konstant är <math> 0\, </math> innebär <b><span style="color:red">inte</span></b> att derivatan av <math> a\cdot f(x) </math> blir <math> 0\cdot f\,'(x) </math> och därmed <math> 0\, </math>. Det finns ingen regel som säger att en produkt av funktioner kan deriveras faktorvis, se [[2.5_Deriveringsregler#Produkt_och_kvot_av_funktioner|<b><span style="color:blue">Produkt och kvot av funktioner</span></b>]]. |
− | [[2.5_Deriveringsregler#Derivatan_av_en_konstant|< | + | [[2.5_Deriveringsregler#Derivatan_av_en_konstant|<b><span style="color:blue">Regeln om derivatan av en konstant</span></b>]] innebär: Derivatan av en "ensam" konstant är <math> 0\, </math>. Förekommer konstanten däremot additivt i ett uttryck måste regeln preciseras: |
</div> <!-- tolv5 --> | </div> <!-- tolv5 --> | ||
Rad 284: | Rad 284: | ||
:::::<math> \; f\,'(x) \; = \; 0 \,+\, \left(\displaystyle {- {1\over x^2}}\right) = - {1\over x^2} </math> | :::::<math> \; f\,'(x) \; = \; 0 \,+\, \left(\displaystyle {- {1\over x^2}}\right) = - {1\over x^2} </math> | ||
− | Här har resultatet från Exempel 2 på [[2.5_Deriveringsregler#Derivatan_av_en_potens|< | + | Här har resultatet från Exempel 2 på [[2.5_Deriveringsregler#Derivatan_av_en_potens|<b><span style="color:blue">Derivatan av en potens</span></b>]] använts: |
:::Derivatan av <math> y = \displaystyle {1 \over x} </math> är <math> y\,' = \displaystyle - \, {1 \over x^2} </math> | :::Derivatan av <math> y = \displaystyle {1 \over x} </math> är <math> y\,' = \displaystyle - \, {1 \over x^2} </math> | ||
Rad 321: | Rad 321: | ||
<math> \quad f\,'(x) \, = -12\,x^3 + 27\,x^2 - 16\,x + 17 </math> | <math> \quad f\,'(x) \, = -12\,x^3 + 27\,x^2 - 16\,x + 17 </math> | ||
− | Se även [[2.5_Fördjupning_till_Deriveringsregler#Derivatan_av_ett_polynom|< | + | Se även [[2.5_Fördjupning_till_Deriveringsregler#Derivatan_av_ett_polynom|<b><span style="color:blue">Derivatan av ett polynom</span></b>]]. |
</div></td> | </div></td> | ||
</tr> | </tr> | ||
Rad 334: | Rad 334: | ||
:::::<math> y\,' \, = - {1\over x^2} + {1 \over 2\,\sqrt{x}} </math> | :::::<math> y\,' \, = - {1\over x^2} + {1 \over 2\,\sqrt{x}} </math> | ||
− | Här har resultaten från Exempel 2 och 3 på [[2.5_Deriveringsregler#Derivatan_av_en_potens|< | + | Här har resultaten från Exempel 2 och 3 på [[2.5_Deriveringsregler#Derivatan_av_en_potens|<b><span style="color:blue">Regeln om derivatan av en potens</span></b>]] använts: |
:::Derivatan av <math> f(x) = \displaystyle {1 \over x} </math> är <math> f\,'(x) = \displaystyle - \, {1 \over x^2} </math> och | :::Derivatan av <math> f(x) = \displaystyle {1 \over x} </math> är <math> f\,'(x) = \displaystyle - \, {1 \over x^2} </math> och | ||
Rad 344: | Rad 344: | ||
== <b><span style="color:#931136">Produkt och kvot av funktioner</span></b> == | == <b><span style="color:#931136">Produkt och kvot av funktioner</span></b> == | ||
<div class="tolv"> <!-- tolv7 --> | <div class="tolv"> <!-- tolv7 --> | ||
− | Regeln om [[2.5_Deriveringsregler#Derivatan_av_en_summa_av_funktioner|< | + | Regeln om [[2.5_Deriveringsregler#Derivatan_av_en_summa_av_funktioner|<b><span style="color:blue">Derivatan av en summa av funktioner</span></b>]] säger: En summa av funktioner kan deriveras termvis. |
Av detta får man inte dra slutsatsen att samma sak gäller varken för en produkt eller en kvot av funktioner: | Av detta får man inte dra slutsatsen att samma sak gäller varken för en produkt eller en kvot av funktioner: | ||
Rad 392: | Rad 392: | ||
<div class="tolv"> <!-- tolv6 --> | <div class="tolv"> <!-- tolv6 --> | ||
− | Det finns specifika regler för derivatan av en produkt resp. kvot av funktioner, den s.k. < | + | Det finns specifika regler för derivatan av en produkt resp. kvot av funktioner, den s.k. <b><span style="color:red">produkt-</span></b> resp. <b><span style="color:red">kvotregeln</span></b>. Båda behandlas i kursen Matematik 4 enligt Skolverkets kursplan. |
</div> <!-- tolv6 --> | </div> <!-- tolv6 --> | ||
Rad 434: | Rad 434: | ||
De två sista raderna i tabellen är snarare generella satser än deriveringsregler. De gäller för alla funktioner <math> f(x)\, </math> och <math> g(x)\, </math>. Av praktiska skäl tar vi upp dem i samma tabell som deriveringsreglerna. | De två sista raderna i tabellen är snarare generella satser än deriveringsregler. De gäller för alla funktioner <math> f(x)\, </math> och <math> g(x)\, </math>. Av praktiska skäl tar vi upp dem i samma tabell som deriveringsreglerna. | ||
− | Vi kommer att komplettera tabellen ovan så fort vi lärt oss fler deriveringsregler om [[2.6 Derivatan av exponentialfunktioner|< | + | Vi kommer att komplettera tabellen ovan så fort vi lärt oss fler deriveringsregler om [[2.6 Derivatan av exponentialfunktioner|<b><span style="color:blue">Derivatan av exponentialfunktioner</span></b>]]. |
</div> <!-- tolv7 --> | </div> <!-- tolv7 --> | ||
Versionen från 19 november 2016 kl. 16.40
<< Förra avsnitt | Genomgång | Övningar | Fördjupning | Nästa avsnitt >> |
Lektion 17 Deriveringsregler I
Lektion 18 Deriveringsregler II
Deriveringsreglerna är till för att kunna derivera de viktigaste typerna av funktioner som förekommer i tillämpningarna, utan att varje gång behöva använda derivatans definition. Här sammanställs själva reglerna. Deras bevis behandlas i underavsnittet Fördjupning.
Derivatan av en konstant
Regel: Derivatan av en konstant är 0. Om \( \;\; f(x) \; = \: c \quad {\rm där} \quad c = {\rm const.} \) då \( \;\; f\,'(x) \; = \: 0 \). Bevis: Se Fördjupning: Derivatan av en konstant.
|
\( \qquad \) | Exempel För funktionen \( \;\, f(x) \; = \: -5 \; \) blir derivatan:
|
Derivatan av en linjär funktion
Regel: Derivatan av en linjär funktion är konstant. Om \( \;\; f(x) \; = \; k\cdot x \, + \, m \quad {\rm där} \quad k,\,m = {\rm const. } \) då \( \;\; f\,'(x) \; = \; k \) Bevis: Se Fördjupning: Derivatan av en linjär funktion.
|
\( \qquad \) | Exempel För funktionen \( \;\, f(x) \; = \; -8\,x + 9 \; \) blir derivatan:
|
Derivatan av en kvadratisk funktion
Regel: Derivatan av en kvadratisk funktion är en linjär funktion: Om \( \;\; f(x) \; = \; a\,x^2 \, + \, b\,x \, + \, c \quad {\rm där} \quad a,\,b,\,c = {\rm const. } \) då \( \;\; f\,'(x) \; = \; 2\,a\,x \, + \, b \)
|
\( \qquad \) | Exempel 1 För funktionen \( \;\, f(x) \; = \; 5\,x^2 - 3\,x + 6 \; \) blir derivatan:
Exempel 2 För funktionen \( f(x) \; = \; -25\,x^2 + 16\,x - 90 \; \) blir derivatan:
|
Derivatan av en potens
Regeln om derivatan av en potens: Om \( \;\; f(x) \; = \; x\,^n \quad {\rm där} \quad n = {\rm const.} \) då \( \;\; f\,'(x) \; = \; n\cdot x\,^{n-1} \) |
\( \qquad \) |
Exempel 1 \( n \,=\, \) positivt heltal: För funktionen \( f(x) = x^5 \; \) blir derivatan:
|
Denna regel är den viktigaste formeln för derivering av elementära funktioner. Alla deriveringsregler vi ställt upp hittills är specialfall av denna regel.
Regeln gäller för ALLA exponenter \( {\color{Red} n} \), dvs inte bara för positiva (ex. 1) utan även för negativa heltalsexponenter (ex. 2) och t.o.m. för bråktal i exponenten (ex. 3).
Exempel 2 \( n \,=\, \) negativt heltal:
Derivera funktionen \( f(x) = \displaystyle {1 \over x} \) med hjälp av regeln om derivatan av en potens.
Innan vi kan tillämpa denna regel måste vi omvandla \( \displaystyle {1 \over x} \) till en potens med hjälp av Potenslagarna:
\( \qquad \displaystyle f(x) = {1 \over x} = x^{-1} \; \) , se Lagen om negativ exponent.
Därmed är \( \,n = -1 \) och vi kan sätta in \( \, n = -1 \) i regeln om derivatan av en potens och får:
\( \qquad \displaystyle f\,'(x) = (-1)\cdot x^{-1-1} = (-1)\cdot x^{-2} = \boxed{\,- \, {1 \over x^2}\,} \)
Även i den sista likheten i raden ovan har Lagen om negativ exponent använts.
Exempel 3 \( n \,=\, \) bråktal:
Derivera funktionen \( f(x) = \sqrt{x} \) med hjälp av regeln om derivatan av en potens.
Innan vi kan tillämpa denna regel måste vi omvandla \( \sqrt{x} \) till en potens:
\( \qquad \displaystyle f(x) = \sqrt{x} = x\,^{1 \over 2} \; \) , se Lagen om kvadratroten.
Därmed är \( n = {1 \over 2} \) och vi kan sätta in \( n = {1 \over 2} \) i regeln om derivatan av en potens och får:
\( \qquad \displaystyle f\,'(x) = {1 \over 2}\cdot x\,^{{1 \over 2}-1} = {1 \over 2}\cdot x\,^{-{1 \over 2}} = {1 \over 2}\cdot {1\over x\,^{1 \over 2}} = {1 \over 2}\cdot {1\over \sqrt{x}} = \boxed{\,{1 \over 2\, \sqrt{x}}\,} \)
Även i den näst sista likheten i raden ovan har Lagen om kvadratroten använts.
Derivatan av en funktion med en konstant faktor
Regel: En konstant faktor förblir oförändrad vid derivering:
|
\( \qquad \) | Exempel För funktionen \( y \,\, = \,\, 6\cdot \sqrt{x} \; \) blir derivatan:
Här har resultatet från Exempel 3 på Derivatan av en potens använts:
|
Tillämpning av regeln ovan på en potensfunktion:
|
\( \qquad \) | Exempel För funktionen \( y = 12\,x^4 \; \) blir derivatan:
|
OBS! Konstanten \( {\color{Red} a} \) tas oförändrad över till derivatan.
Regeln om att derivatan av en konstant är \( \, 0\, \) får ingen tillämpning här, därför att konstanten \( a\, \) inte är en additiv term här utan bunden till produkten \( a \cdot x\,^n \) som en faktor framför potensen och därför inte kan separeras från den:
Konstant faktor vs. additiv konstant
I funktionen \( y \,=\, 6 \cdot \sqrt{x} \) är \( \, 6 \) en konstant faktor i funktionsuttrycket.
Derivatan blir \( y' = 6\cdot \displaystyle {1 \over 2\,\sqrt{x}} = {6 \over 2\,\sqrt{x}} = {3 \over \sqrt{x}} \) enligt regeln ovan: "En konstant faktor förblir oförändrad vid derivering".
I funktionen \( y \,=\, 6 \,+\, \sqrt{x} \) är \( \, 6 \) en additiv konstant i funktionsuttrycket.
Derivatan blir \( y' = 0 \,+\, \displaystyle {1 \over 2\,\sqrt{x}} = {1 \over 2\,\sqrt{x}} \) enligt regeln om att derivatan av en konstant är \( \, 0\, \).
Att derivatan av en konstant är \( 0\, \) innebär inte att derivatan av \( a\cdot f(x) \) blir \( 0\cdot f\,'(x) \) och därmed \( 0\, \). Det finns ingen regel som säger att en produkt av funktioner kan deriveras faktorvis, se Produkt och kvot av funktioner.
Regeln om derivatan av en konstant innebär: Derivatan av en "ensam" konstant är \( 0\, \). Förekommer konstanten däremot additivt i ett uttryck måste regeln preciseras:
Regel: Derivatan av en additiv konstant är \( 0\, \). Om \( \; y \; = \; c + f(x)\, \quad {\rm där} \quad c = {\rm const.} \) då \( \; y' \; = \; 0 \,+\, f\,'(x) = f\,'(x) \).
|
\( \qquad \) | Exempel För funktionen \( \; f(x) \; = \; -5 + \displaystyle {1\over x} \; \) blir derivatan:
Här har resultatet från Exempel 2 på Derivatan av en potens använts:
|
I exemplet ovan användes redan följande regel:
Derivatan av en summa av funktioner
Regel: En summa av funktioner kan deriveras termvis.
|
\( \qquad \) | Exempel 1 För polynomfunktionen \( \quad f(x) = -3\,x^4\,+\,9\,x^3\,-\,8\,x^2\,+\,17\,x\,-\,12 \; \) blir derivatan: \( \quad f\,'(x) \, = -12\,x^3 + 27\,x^2 - 16\,x + 17 \) Se även Derivatan av ett polynom. |
Exempel 2
För funktionen \( \displaystyle y = {1\over x} + \sqrt{x} \; \) blir derivatan:
- \[ y\,' \, = - {1\over x^2} + {1 \over 2\,\sqrt{x}} \]
Här har resultaten från Exempel 2 och 3 på Regeln om derivatan av en potens använts:
- Derivatan av \( f(x) = \displaystyle {1 \over x} \) är \( f\,'(x) = \displaystyle - \, {1 \over x^2} \) och
- Derivatan av \( f(x) = \sqrt{x} \) är \( f\,'(x) = \displaystyle {1 \over 2\, \sqrt{x}} \).
Produkt och kvot av funktioner
Regeln om Derivatan av en summa av funktioner säger: En summa av funktioner kan deriveras termvis.
Av detta får man inte dra slutsatsen att samma sak gäller varken för en produkt eller en kvot av funktioner:
En produkt av funktioner kan inte deriveras faktorvis.
Rätt:
|
\( \qquad \) | Inte heller en kvot av funktioner kan deriveras så att täljaren deriveras för sig och nämnaren för sig.
Rätt:
|
Det finns specifika regler för derivatan av en produkt resp. kvot av funktioner, den s.k. produkt- resp. kvotregeln. Båda behandlas i kursen Matematik 4 enligt Skolverkets kursplan.
Tabell över deriveringsregler
Vi sammanfattar våra resultat i följande tabell där \( c,\,a,\,k,\,m,\,n \) är konstanter medan \( \, x\, \) och \( \, y\, = \, f(x) \) är variabler:
\( y\, \) | \( y\,' \) |
---|---|
\( c\, \) | \( 0\, \) |
\( x\, \) | \( 1\, \) |
\( a\; x \) | \( a\, \) |
\( k\; x \, + \, m \) | \( k\, \) |
\( x^2\, \) | \( 2\,x \) |
\( a\,x^2 \) | \( 2\,a\,x \) |
\( x^n\, \) | \( n\cdot x\,^{n-1} \) |
\( a\,x\,^n \) | \( a\cdot n\cdot x\,^{n-1} \) |
\( \displaystyle {1 \over x} \) | \( \displaystyle - {1 \over x^2} \) |
\( \sqrt{x} \) | \( \displaystyle {1 \over 2\, \sqrt{x}} \) |
\( a\cdot f(x) \) | \( a\cdot f\,'(x) \) |
\( f(x) + g(x)\, \) | \( f\,'(x) + g\,'(x) \) |
De två sista raderna i tabellen är snarare generella satser än deriveringsregler. De gäller för alla funktioner \( f(x)\, \) och \( g(x)\, \). Av praktiska skäl tar vi upp dem i samma tabell som deriveringsreglerna.
Vi kommer att komplettera tabellen ovan så fort vi lärt oss fler deriveringsregler om Derivatan av exponentialfunktioner.
Internetlänkar
http://www.youtube.com/watch?v=vzYS8OEnngw
https://www.youtube.com/watch?v=ekESj2A5IiY
https://www.youtube.com/watch?v=hZXusMjayZk
http://www.youtube.com/watch?v=hYKiTPB7jnQ&feature=related
Copyright © 2011-2016 Math Online Sweden AB. All Rights Reserved.