Skillnad mellan versioner av "3.3 Terasspunkter"
Taifun (Diskussion | bidrag) m |
Taifun (Diskussion | bidrag) m |
||
Rad 24: | Rad 24: | ||
Ett minimum i <math> \, x = -2 \, </math> där gäller<span style="color:black">:</span> <math> \, f\,'(-2) \, = \, 0 . | Ett minimum i <math> \, x = -2 \, </math> där gäller<span style="color:black">:</span> <math> \, f\,'(-2) \, = \, 0 . | ||
</math> | </math> | ||
+ | |||
+ | En <b><span style="color:red">terasspunkt</span></b> i <math> \, x = 0 \, </math> <span style="color:black">:</span> <math> \, f\,'(0) \quad = \, 0 \quad {\rm och} \quad f\,''(0) \quad {\color {Red} =} \;\; 0 </math>, men <math> \; f\,'''(0) \, {\color {Red} \neq} \, 0 \; </math>. | ||
+ | </small></div> | ||
Ett maximum i <math> \, x = 2 \, </math> där gäller <span style="color:black">:</span> <math> \, f\,'(2) \quad = \, 0 </math>. | Ett maximum i <math> \, x = 2 \, </math> där gäller <span style="color:black">:</span> <math> \, f\,'(2) \quad = \, 0 </math>. | ||
Rad 30: | Rad 33: | ||
</table> | </table> | ||
<div class="ovnE"><small> | <div class="ovnE"><small> | ||
− | |||
− | |||
Versionen från 17 januari 2019 kl. 12.57
<< Förra avsnitt | Genomgång | Övningar | Nästa avsnitt >> |
Vad är en terasspunkt?
![]() |
Bilden visar tre punkter där kurvan har tangenter med lutningen \( \, 0 \, \):
En terasspunkt i \( \, x = 0 \, \) : \( \, f\,'(0) \quad = \, 0 \quad {\rm och} \quad f\,''(0) \quad {\color {Red} =} \;\; 0 \), men \( \; f\,'''(0) \, {\color {Red} \neq} \, 0 \; \). </small></div> Ett maximum i \( \, x = 2 \, \) där gäller : \( \, f\,'(2) \quad = \, 0 \). |
Vi hade redan bestämt att
derivatan var \( \, 0 \) för \( \, x = 0 \, \):
|
|
Nu ska vi undersöka derivatans tecken till vänster och till höger om nollstället \( \, x = 0 \).
Vi väljer t.ex. punkterna \( \, x = -0,1 \) och \( \, x = 0,1 \) och bestämmer derivatans tecken i dessa punkter:
|
|
Dessa resultat är infogade i teckentabellen till höger som visar:
- \( \, f\,'(0) = 0 \, \)
- Derivatan har tecknet \(+\) till vänster och även \( + \) till höger om \( \, 0 \, \) dvs derivatan byter inte tecken kring sitt nollställe.
Enligt regeln om terasspunkt med teckenstudie drar vi slutsatsen att funktionen \( f(x)\, \) har en terasspunkt i \( \, x = 0 \).
Avgörande för att teckenstudie är en korrekt algebraisk metod är förutsättningen att \( \; y \, = \, f(x) \; \) är kontinuerlig i alla punkter av det betraktade området.
Hur grafen kan lura oss
- \[\begin{array}{rcl} f(x) & = & x^3 + \, 0,5\,x \\ f'(x) & = & 3\,x^2 + \, 0,5 \\ f'(0) & = & 3\cdot 0^2 + \, 0,5 = 3\cdot 0 \, + \, 0,5 = 0 \, + \, 0,5 \, = \, 0,5 \, \neq \, 0 \end{array}\]
Dvs redan första kravet i regeln om terasspunkt med derivator, nämligen att derivatan ska vara \( \, 0 \, \) för \( \, x = 0 \, \) är inte uppfyllt: \( \, f(x) \, \) har ingen terasspunkt i \( \, x = 0 \, \). Grafen har lurat oss.
Vill man använda grafer borde man först undersöka funktionen med de strikta algebraiska reglerna och sedan rita grafer för att visualisera resultatet. I det här fallet är det lämpligt att även rita tangenten till \( \, f(x) \, \) i \( \, x = 0 \, \). Lägger man till graferna till derivatan och andraderivatan får man en fullständig överblick över funktionens beteende i och kring \( \, x = 0 \, \):
Bilden till vänster visar funktionens graf samt tangenten till kurvan i \( \, x = 0 \). Tangenten är inte horisontell dvs har inte lutningen \( \, 0 \). I beräkningen ovan hade vi fått: \( f'(x) = 0,5 \neq 0 \). Därmed är även tangentens lutning \( \, 0,5 \, \) och dess ekvation: \( y = 0,5\,x \). Därför föreligger i \( \, x = 0 \, \) inte en terasspunkt.
Bilden i mitten visar att derivatan inte har något nollställe vilket visar att funktionen varken har extrempunkter eller terasspunkter. Derivatan är alltid positiv och antar i \( x = 0 \) värdet \( \, 0,5 \, \). Om detta värde hade varit \( \, 0 \, \) hade funktionen haft en terasspunkt i \( x = 0 \).
Bilden till höger visar att andraderivatan har ett nollställe i \( \, x = 0 \, \), där grafen skär \( \, x\)-axeln. Vad innebär detta? Vi har inte haft ett sådant fall där derivatan är skild från \( \, 0 \, \), men andraderivatan är \( \, 0 \, \). Därför handlar det om en speciell punkt på kurvan som varken är extrem- eller terasspunkt, för i dessa fall borde ju derivatan vara \( \, 0 \, \). Faktiskt handlar det om en ny typ av punkt som kallas inflexionspunkt.
Inflexionspunkter
Terasspunkter är specialfall av inflexionspunkter, eftersom kurvan byter alltid svängriktning i en terasspunkt.
Men inte alla inflexionspunkter är terasspunkter. Inflexionspunkter kan ha tangenter med vilken lutning som helst.
Terasspunkter är sådana inflexionspunkter där tangenten har lutningen \( \, 0 \, \).
Pga funktionens kontinuitet finns alltid en inflexionspunkt mellan två extrempunkter.
Regeln om inflexionspunkter
\( f\,''(a) \, = \, 0 \; \) och \( \; f\,'''(a) \, \neq \, 0 \; \quad \Longrightarrow \quad \) Funktionen \( \; y \, = \, f(x) \; \) har en inflexionspunkt i \( \; x = a \; \).
Om dessutom \( \; f\,'(a) \, = \, 0 \; \) är \( \; x = a \; \) en terasspunkt. (Samma som tidigare)
En terasspunkt är alltid en inflexionspunkt, men inte tvärtom.
För att hitta inflexionspunkter ställer man alltså upp andraderivatan, sätter den till \( \, 0 \, \) och beräknar\( \, x \), dvs andraderivatans nollställen. Sedan kontrollerar man om tredjederivatan verkligen är skild från \( \, 0 \, \) för andraderivatans nollställen.
Dessutom gäller det: Om \( \, f\,'''(a) > 0 \, \) är kurvan konkav i \( \, x = a \ ,\) och vi har en övergång från höger- till vänstersväng \(-\) som i grafen ovan. Om däremot \( \, f\,'''(a) < 0 \, \) är kurvan konvex i \( \, x = a \ ,\) och kurvan går över från en vänster- till en högersväng. </big>
Copyright © 2011-2019 Taifun Alishenas. All Rights Reserved.