Skillnad mellan versioner av "Potenser"

Från Mathonline
Hoppa till: navigering, sök
m
m
 
(93 mellanliggande versioner av samma användare visas inte)
Rad 2: Rad 2:
 
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%"
 
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%"
 
| style="border-bottom:1px solid #797979" width="5px" |  
 
| style="border-bottom:1px solid #797979" width="5px" |  
{{Not selected tab|[[1.1 Polynom|<-- Till Polynom]]}}
+
{{Not selected tab|[[Repetitioner från Matte 2| <<&nbsp;&nbsp;Repetitioner]]}}
 
{{Selected tab|[[Potenser|Genomgång]]}}
 
{{Selected tab|[[Potenser|Genomgång]]}}
 +
{{Not selected tab|[[Quiz till Potenser|Quiz]]}}
 
{{Not selected tab|[[Övningar till Potenser|Övningar]]}}
 
{{Not selected tab|[[Övningar till Potenser|Övningar]]}}
 +
{{Not selected tab|[[1.1 Polynom|1:a avsnitt: Polynom&nbsp;&nbsp;>> ]]}}
 
| style="border-bottom:1px solid #797979"  width="100%"| &nbsp;
 
| style="border-bottom:1px solid #797979"  width="100%"| &nbsp;
 
|}
 
|}
  
 
 
<big>Potenser är ett repeterande underavsnitt i avsnittet [[1.1 Polynom|<b><span style="color:blue">Polynom</span></b>]]. Övningar till det finns separat i fliken ovan.</big>
 
 
 
== <b><span style="color:#931136">Vad är en potens?</span></b> ==
 
<div class="exempel">
 
[[Image: Hur raknar du Potenser 20.jpg]]
 
:<math> {\rm {\color{Red} {OBS!\quad Vanligt\,fel:}}} \quad\; 2\,^3 \; = \; 6 </math>
 
 
:<math> \qquad\quad\;\, {\rm Rätt:} \qquad\qquad\! 2\,^3 \; = \; 2 \cdot 2 \cdot 2 \; = \; 4 \cdot 2 \; = \; 8 </math>
 
</div>  <!-- exempel -->
 
 
<div class="tolv"> <!-- tolv1 -->
 
Felet beror på att man blandar ihop två olika räkneoperationer: multiplikationen med <strong><span style="color:red">upphöjt till</span></strong>.
 
 
Hjärnan associerar <math> \, 2 \, </math> och <math> \, 3 \, </math> blind till multiplikationstabellen och ger <math> \, 6 </math> vilket är fel.
 
 
I själva verket betyder <math> \, 2\,^{\color{Red} 3} \, </math> inte <math> \, 2 \cdot 3 \, </math> utan <math> \, \underbrace{2 \cdot 2 \cdot 2}_{{\color{Red} 3}\;\times} \, </math> som sedan förkortas till <math> \, 2\,^{\color{Red} 3} </math>.
 
</div> <!-- tolv1 -->
 
  
 
<table>
 
<table>
 
<tr>
 
<tr>
   <td><div class="border-divblue">
+
   <td>[[Image: Potens Bas Exponent_80.jpg]]</td>
<b>Ex.:</b>
+
  <td>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<div class="border-divblue">
 +
<big>Exempel på potens:
  
::<math> 2\,^{\color{Red} 3} \; = \;\; \underbrace{2 \, \cdot \, 2 \, \cdot \, 2}_{{\color{Red} 3}\;\times} </math>  
+
::<math> 2\,^{\color{Red} 3} \; = \;\; \underbrace{2 \, \cdot \, 2 \, \cdot \, 2}_{{\color{Red} 3}\;\times} \; = \; 8</math>  
  
<b><span style="color:#931136">Potens</span> = upprepad multiplikation</b>
+
<b><span style="color:#931136">Potens</span></b> = upprepad <b><span style="color:red">multiplikation</span></b>
  
<b>av <math> \, 2 \, </math> med sig själv, <math> \, {\color{Red} 3} \, </math> gånger.</b>  
+
av <math> \, 2 \, </math> med sig själv, <math> \, {\color{Red} 3} \, </math> gånger.  
</div>
+
</big></div></td>
</td>
+
  <td>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;[[Image: Potens Bas Exponent_80.jpg]]</td>
+
 
</tr>
 
</tr>
 
</table>
 
</table>
  
  
<div class="tolv"> <!-- tolv2 -->
+
<big>
<math> \, 2\,^3 \, </math> läses <math> \, {\color{Red} 2} </math> <strong><span style="color:red">upphöjt till</span></strong><math> \, {\color{Red} 3} \, </math> och kallas för &nbsp;<strong><span style="color:red">potens</span></strong>. <math> \, 2\, </math> heter <strong><span style="color:red">basen</span></strong> och <math> \, 3 \, </math> <strong><span style="color:red">exponenten</span></strong>.
+
<b><span style="color:red">OBS!</span></b>&nbsp;&nbsp; Förväxla inte begreppen<span style="color:black">:</span> <math> \, 2\,^3 \, </math> är själva potensen, medan <math> \, {\color{Red} 3} \, </math> är <b><span style="color:red">exponenten</span></b> och <math> \, {\color{green} 2}\, </math> förstås <b><span style="color:green">basen</span></b>.
  
Exponenten <math> \, {\color{Red} 3} \, </math> är inget tal i vanlig bemärkelse utan endast en information om att <math> \, 2 \, </math> ska multipliceras <math> \, {\color{Red} 3} \, </math> gånger med sig själv (jfr. [[1.2_Räkneordning#Varf.C3.B6r_g.C3.A5r_multiplikation_f.C3.B6re_addition.3F|<strong><span style="color:blue">upprepad addition</span></strong>]]).
+
Exponenten <math> \, {\color{Red} 3} \, </math> är inget tal som ingår i beräkningen, utan endast en information om att<span style="color:black">:</span>
</div> <!-- tolv2 -->
+
 
 +
<math> \, 2 \, </math> ska multipliceras <math> \, {\color{Red} 3} \, </math> gånger med sig själv, en förkortning för upprepad multiplikation (jfr. [http://mathonline.se:1800/index.php?title=1.2_R%C3%A4kneordning#Varf.C3.B6r_g.C3.A5r_multiplikation_f.C3.B6re_addition.3F <b><span style="color:blue">upprepad addition</span></b>]).
 +
</big>
  
  
 
<div class="exempel"> <!-- exempel1 -->
 
<div class="exempel"> <!-- exempel1 -->
== <b><span style="color:#931136">Exempel 1</span></b> ==
+
=== <b><span style="color:#931136">Exempel</span></b> ===
 
<big>
 
<big>
 
Förenkla<span style="color:black">:</span> <math> \qquad \displaystyle{2\,^3 \cdot \; 2\,^5 \over 2\,^4} </math>
 
Förenkla<span style="color:black">:</span> <math> \qquad \displaystyle{2\,^3 \cdot \; 2\,^5 \over 2\,^4} </math>
  
  
<strong><span style="color:#931136">Lösning:</span></strong> <math> \qquad \displaystyle{{2\,^3 \cdot \; 2\,^5 \over 2\,^4} \, = \, {2 \cdot 2 \cdot 2 \quad \cdot \quad 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \over 2 \cdot 2 \cdot 2 \cdot 2} \, = \, {2 \cdot 2 \cdot 2 \quad \cdot \quad 2 \cdot \cancel{2 \cdot 2 \cdot 2 \cdot 2} \over \cancel{2 \cdot 2 \cdot 2 \cdot 2}} \, = \, 2 \cdot 2 \cdot 2 \cdot 2 \, = \, 4 \cdot 4 \, = \, 16} </math>
+
<b><span style="color:#931136">Lösning:</span></b> <math> \qquad \displaystyle{{2\,^3 \cdot \; 2\,^5 \over 2\,^4} \, = \, {2 \cdot 2 \cdot 2 \quad \cdot \quad 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \over 2 \cdot 2 \cdot 2 \cdot 2} \, = \, {2 \cdot 2 \cdot 2 \quad \cdot \quad 2 \cdot \cancel{2 \cdot 2 \cdot 2 \cdot 2} \over \cancel{2 \cdot 2 \cdot 2 \cdot 2}} \, = \, 2 \cdot 2 \cdot 2 \cdot 2 \, = \, 4 \cdot 4 \, = \, 16} </math>
  
 
:::::::::::::::::OBS! &nbsp; Förenkla alltid först, räkna sedan!
 
:::::::::::::::::OBS! &nbsp; Förenkla alltid först, räkna sedan!
  
 
Snabbare<span style="color:black">:</span> <math> \qquad\!\! \displaystyle{{2\,^3 \cdot \; 2\,^5 \over 2\,^4} \, = \, 2\,^{3\,+\,5\,-\,4} \, = \, 2\,^4 \, = \, 2 \cdot 2 \cdot 2 \cdot 2 \, = \, 4 \cdot 4 \, = \, 16} </math>
 
Snabbare<span style="color:black">:</span> <math> \qquad\!\! \displaystyle{{2\,^3 \cdot \; 2\,^5 \over 2\,^4} \, = \, 2\,^{3\,+\,5\,-\,4} \, = \, 2\,^4 \, = \, 2 \cdot 2 \cdot 2 \cdot 2 \, = \, 4 \cdot 4 \, = \, 16} </math>
 +
 +
För att förstå den snabbare lösningen se [[Potenser#Potenslagarna|<b><span style="color:blue">Potenslagarna</span></b>]].
 
</big>
 
</big>
 
</div>  <!-- exempel1 -->
 
</div>  <!-- exempel1 -->
  
  
<div class="tolv"> <!-- tolv2 -->
+
<big>Generellt:</big>
För att förstå den snabbare lösningen se [[Potenser#Potenslagarna|<strong><span style="color:blue">potenslagarna</span></strong>]].
+
</div> <!-- tolv2 -->
+
  
 +
== <b><span style="color:#931136">Potenser med positiva exponenter</span></b> ==
  
== <b><span style="color:#931136">Potens med positiva heltalsexponenter</span></b> ==
+
<div class="ovnE">
<div class="tolv"> <!-- tolv1 -->
+
Potensen <big><math> \, a\,^{\color{Red} x} \, </math></big> med <b><span style="color:red">positiv</span></b> exponent (<math> x \, </math> heltal <math> > 0 \, </math> och <math> \, a \, \neq 0 </math>) kan definieras som<span style="color:black">:</span>
  
Potensen <big><math> \, a\,^{\color{Red} x} \, </math></big> kan, om exponenten <math> \, {\color{Red} x} \, </math> är ett positivt heltal och basen <big><math> \, a \, </math></big> ett tal <math> \neq 0 </math>, definieras som
+
:::<b>Upprepad multiplikation av <big><math> \, a \, </math></big> med sig själv, <math> \, {\color{Red} x} \, </math> gånger:</b>
  
::::::<b>Upprepad multiplikation av <big><math> \, a \, </math></big> med sig själv, <math> \, {\color{Red} x} \, </math> gånger:</b>
+
:::::<big><math> \quad a\,^{\color{Red} x} = \underbrace{a \cdot a \cdot a \cdot \quad \ \cdots \quad \cdot a}_{{\color{Red} x}\;{\rm gånger}} </math></big>
 
+
</div>
::::::::<big><math> a\,^{\color{Red} x} = \underbrace{a \cdot a \cdot a \cdot \quad \ \cdots \quad \cdot a}_{{\color{Red} x}\;{\rm gånger}} </math></big>
+
</div> <!-- tolv1 -->
+
 
+
<div class="exempel"> <!-- exempel2 -->
+
== <b><span style="color:#931136">Exempel 2</span></b> ==
+
<big>
+
Förenkla<span style="color:black">:</span> <big><math> \quad\;\; a\,^2 \, \cdot \, a\,^3 </math></big>
+
 
+
 
+
<strong><span style="color:#931136">Lösning:</span></strong>
+
 
+
::::<big><math> a\,^2 \cdot a\,^3 \; = \; \underbrace{a \cdot a}_{2\;\times} \; \cdot \; \underbrace{a \cdot a \cdot a}_{3\;\times} \; = \; \underbrace{a \cdot a \cdot a \cdot a \cdot a}_{{\color{Red} 5}\;\times} \; = \; a\,^{\color{Red} 5}</math></big>
+
 
+
Snabbare:
+
 
+
::::<big><math> a\,^2 \cdot a\,^3 \; = \; a\,^{2\,+\,3} = \; a\,^{\color{Red} 5} </math></big>
+
</big>
+
</div> <!-- exempel2 -->
+
 
+
 
+
<div class="tolv"> <!-- tolv2 -->
+
Den snabbare lösningen är ett exempel på den första potenslagen:
+
</div> <!-- tolv2 -->
+
  
  
 
== <b><span style="color:#931136">Potenslagarna</span></b> ==
 
== <b><span style="color:#931136">Potenslagarna</span></b> ==
<div class="tolv"> <!-- tolv3 -->
 
  
Följande lagar gäller för potenser där basen <math> a\, </math> är ett tal <math> \neq 0 </math>, exponenterna <math> \, x \, </math> och <math> \, y \, </math> godtyckliga tal och <math> m,\,n </math> heltal (<math> n\neq 0 </math>):
 
</div> <!-- tolv3 -->
 
  
 
+
<div class="border-divblue">
<div class="border-divblue"><big>
+
 
<b><span style="color:#931136">Första potenslagen:</span></b> <big><math> \qquad\qquad\quad\;\, a^x \cdot a^y \; = \; a\,^{x \, + \, y} \qquad\qquad </math></big>
 
<b><span style="color:#931136">Första potenslagen:</span></b> <big><math> \qquad\qquad\quad\;\, a^x \cdot a^y \; = \; a\,^{x \, + \, y} \qquad\qquad </math></big>
 
----
 
----
<b><span style="color:#931136">Andra potenslagen:</span></b> <big><math> \qquad\qquad\qquad\quad \displaystyle {a^x \over a^y} \; = \; a\,^{x \, - \, y} \qquad\qquad </math></big>
+
<b><span style="color:#931136">Andra potenslagen:</span></b> <big><math> \qquad\qquad\qquad\;\;\; \displaystyle {a^x \over a^y} \; = \; a\,^{x \, - \, y} \qquad\qquad </math></big>
 
----
 
----
 
<b><span style="color:#931136">Tredje potenslagen:</span></b> <big><math> \qquad\qquad\qquad \displaystyle {(a^x)^y} \; = \; a\,^{x \, \cdot \, y} \qquad\qquad </math></big>
 
<b><span style="color:#931136">Tredje potenslagen:</span></b> <big><math> \qquad\qquad\qquad \displaystyle {(a^x)^y} \; = \; a\,^{x \, \cdot \, y} \qquad\qquad </math></big>
 
----
 
----
<b><span style="color:#931136">Lagen om nollte potens:</span></b> <big><math> \qquad\qquad\qquad\! a\,^0 \; = \; 1 \qquad\qquad </math></big>
+
<b><span style="color:#931136">Lagen om nollte potens:</span></b> <big><math> \qquad\qquad\quad\;\;\, a\,^0 \; = \; 1 \qquad\qquad </math></big>
 
----
 
----
<b><span style="color:#931136">Lagen om negativ exponent:</span></b> <big><math> \qquad\qquad a\,^{-x} \; = \; \displaystyle {1 \over a\,^x} \qquad\qquad </math></big>
+
<b><span style="color:#931136">Lagen om negativ exponent:</span></b> <big><math> \qquad\quad\;\;\; a\,^{-x} \; = \; \displaystyle {1 \over a\,^x} \qquad\qquad </math></big>
 
----
 
----
<b><span style="color:#931136">Lagen om rationell exponent:</span></b> <big><math> \qquad\qquad a^{m \over n} \; = \; \sqrt[n]{a^m} \qquad\qquad </math></big>
+
<b><span style="color:#931136">Potens av en produkt:</span></b> <big><math> \qquad\qquad\;\, (a \cdot b)\,^x \; = \; a\,^x \cdot b\,^x \qquad\qquad </math></big>
 
+
<b><span style="color:#931136">Specialfall <small><math>m=1</math></small> (högre rötter):</span></b> <big><math> \qquad\quad\;\, a^{1 \over n} \; = \; \sqrt[n]{a} \qquad\qquad </math></big>
+
 
----
 
----
<b><span style="color:#931136">Potens av en produkt:</span></b> <big><math> \qquad\qquad\;\;\, (a \cdot b)\,^x \; = \; a\,^x \cdot b\,^x \qquad\qquad </math></big>
+
<b><span style="color:#931136">Potens av en kvot:</span></b> <big><math> \qquad\qquad\qquad\, \left(\displaystyle {a \over b}\right)^x \; = \; \displaystyle {a\,^x \over b\,^x} \qquad\qquad </math></big>
----
+
</div>
<b><span style="color:#931136">Potens av en kvot:</span></b> <big><math> \qquad\qquad\qquad \left(\displaystyle {a \over b}\right)^x \; = \; \displaystyle {a\,^x \over b\,^x} \qquad\qquad </math></big>
+
</big></div> <!-- border-divblue -->
+
  
  
<div class="tolv"> <!-- tolv3a -->
+
<big>
För enkelhets skull definierades potensbegreppet inledningsvis endast för positiva heltalsexponenter <math> \, x \, </math> och <math> \, y </math>. Men potenslagarna gäller även för negativa och [[Potenser#Potenser_med_rationella_exponenter|<strong><span style="color:blue">rationella exponenter</span></strong>]]. I formuleringen "negativ exponent" antas <math> \, x > 0 </math>.
+
Dessa lagar gäller för potenser där baserna <math> \, a,\,b \, </math> är tal <math> \, \neq 0 \, </math> och exponenterna <math> \, x,\,y \, </math> är godtyckliga tal.
</div> <!-- tolv3a -->
+
</big>
  
  
== <b><span style="color:#931136">Bevis(idéer) och exempel för några potenslagar</span></b> ==
+
<div class="exempel"> <!-- exempel2 -->
<div class="tolv"> <!-- tolv4 -->
+
=== <b><span style="color:#931136">Exempel på första potenslagen</span></b> ===
 +
<big>
 +
Förenkla<span style="color:black">:</span> <big><math> \quad\;\; a\,^2 \, \cdot \, a\,^3 </math></big>
  
'''Påstående (Första potenslagen)''':
 
  
::::<big><math> a\,^x \cdot a\,^y \; = \; a\,^{x \, + \, y} </math></big>
+
<b><span style="color:#931136">Lösning:</span></b>  
  
'''Bevisidé''':
+
::::<big><math> a\,^2 \cdot a\,^3 \; = \; \underbrace{a \cdot a}_{2\;\times} \; \cdot \; \underbrace{a \cdot a \cdot a}_{3\;\times} \; = \; \underbrace{a \cdot a \cdot a \cdot a \cdot a}_{{\color{Red} 5}\;\times} \; = \; a\,^{\color{Red} 5}</math></big>
  
Påståendet kan bevisas genom att använda potensens definition:
+
Snabbare:
  
::::<big><math> a\,^{\color{Red} x} \cdot a\,^{\color{Red} y} \; = \; \underbrace{a \cdot a \cdot \; \ \cdots \; \cdot a}_{{\color{Red} x}\;\times} \; \cdot \; \underbrace{a \cdot a \cdot \; \ \cdots \; \cdot a}_{{\color{Red} y}\;\times} \; = \; \underbrace{a \cdot a \cdot \; \ \cdots \; \cdot a}_{{\color{Red} {x\,+\,y}}\;\times} \; = \; a\,^{{\color{Red} {x\,+\,y}}} </math></big>
+
::::<big><math> a\,^2 \cdot a\,^3 \; = \; a\,^{2\,+\,3} = \; a\,^{\color{Red} 5} </math></big>
 +
</big>
 +
</div> <!-- exempel2 -->
  
----
 
  
 
+
<big>
'''Påstående (Andra potenslagen)''':
+
Den snabbare lösningen ovan är ett exempel på den första potenslagen. Nedan följer ett exempel på den andra potenslagen.
 
+
</big>
::::<big><math> \displaystyle {a\,^x \over a\,^y} \; = \; a\,^{x \, - \, y} </math></big>
+
</div> <!-- tolv1 -->
+
  
  
 
<div class="exempel"> <!-- exempel3 -->
 
<div class="exempel"> <!-- exempel3 -->
== <b><span style="color:#931136">Exempel 3</span></b> ==
+
=== <b><span style="color:#931136">Exempel på andra potenslagen</span></b> ===
 
<big>
 
<big>
  
 
::::<big><math> \displaystyle {a\,^{\color{Red} 5} \over a\,^{\color{Red} 3}} \; = \; {a \cdot a \cdot a \cdot a \cdot a \; \over \; a \cdot a \cdot a} \; = \; {a \cdot a \cdot \cancel{a \cdot a \cdot a} \; \over \; \cancel{a \cdot a \cdot a}} \; = \; a \cdot a \; = \; a\,^2 </math></big>
 
::::<big><math> \displaystyle {a\,^{\color{Red} 5} \over a\,^{\color{Red} 3}} \; = \; {a \cdot a \cdot a \cdot a \cdot a \; \over \; a \cdot a \cdot a} \; = \; {a \cdot a \cdot \cancel{a \cdot a \cdot a} \; \over \; \cancel{a \cdot a \cdot a}} \; = \; a \cdot a \; = \; a\,^2 </math></big>
  
Snabbare med andra potenslagen:
+
Snabbare:
  
 
::::<big><math> \displaystyle {a\,^{\color{Red} 5} \over a\,^{\color{Red} 3}} \; = \; a\,^{{\color{Red} {5\,-\,3}}} \; = \; a\,^2 </math></big>
 
::::<big><math> \displaystyle {a\,^{\color{Red} 5} \over a\,^{\color{Red} 3}} \; = \; a\,^{{\color{Red} {5\,-\,3}}} \; = \; a\,^2 </math></big>
Rad 173: Rad 126:
  
  
<div class="tolv"> <!-- tolv2 -->
+
<big>
'''Påstående (Lagen om nollte potens)''':
+
Potensbegreppet definierades inledningsvis endast för positiva exponenter. Men den definitionen duger varken för negativa exponenter eller för exponenten <math> \, 0 \, </math>:
  
::::<big><math> a^0 \; = \; 1 </math></big>
+
Antalet multiplikationer av basen med sig själv kan inte vara negativt eller <math> \, 0 \, </math>. Det behövs nya definitioner resp. slutsatser.
 +
</big>
  
'''Bevis''':
 
  
Påståendet kan bevisas genom att använda andra potenslagen:
+
== <b><span style="color:#931136">Potenser med negativa exponenter</span></b> ==
 +
<div class="exempel">
 +
[[Image: Hur raknar du negativa exponenter 20.jpg]]
 +
</div>
  
::::<big><math> \displaystyle{a^x \over a^x} \; = \; a^{x-x} \; = \; a^0 </math></big>
 
  
Å andra sidan vet vi att ett bråk med samma täljare som nämnare har värdet <math> \, 1 </math>:
+
<table>
 +
<tr>
 +
  <td><div class="ovnC">
 +
<big>Potens med negativ exponent<span style="color:black">:</span>
  
::::<big><math> \displaystyle{a^x \over a^x} \; = \; 1 </math></big>
+
<math> \qquad \displaystyle 2\,^{\color{Red} {-3}} \; = \;\; \frac{1}{2\,^{\color{Red} {3}}} \; = \; \frac{1}{8} \quad </math>  
  
Av raderna ovan följer påståendet:
+
<b><span style="color:red">Invertera</span></b> potensen med positiv exponent.
  
::::<big><math> a^0 \; = \; 1 </math></big>
+
----
</div> <!-- tolv4 -->
+
  
 +
Att <b><span style="color:red">"invertera"</span></b> t.ex. <math> \, 10 \, </math> ger <math> \, \displaystyle {1 \over 10} \; </math>.
 +
</big></div>
  
== <b><span style="color:#931136">Potenser med negativa exponenter</span></b> ==
 
<div class="tolv"> <!-- tolv4a -->
 
  
'''Påstående (Lagen om negativ exponent, <math> \, x > 0 </math>)''':
+
</td>
 +
  <td>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<div class="ovnE">
 +
<big>Andra exempel<span style="color:black">:</span></big>
 +
::<math> \displaystyle{10\,^{-1} \, = \, {1 \over 10\,^1} \, = \, {1 \over 10} \, = \, 0,1} </math>
  
::::<big><math> a^{-x} = \displaystyle{1 \over a^x} </math></big>
+
::<math> \displaystyle{10\,^{-2} \, = \, {1 \over 10\,^2} \, = \, {1 \over 10 \cdot 10} \, = \, {1 \over 100} \, = \, 0,01} </math>
  
'''Bevis''':
+
::<math> \displaystyle{10\,^{-3} \, = \, {1 \over 10\,^3} \, = \, {1 \over 10 \cdot 10 \cdot 10} \, = \, {1 \over 1000} \, = \, 0,001} </math>
 +
</div>
 +
</td>
 +
</tr>
 +
</table>
  
Påståendet kan bevisas genom att använda den ovan bevisade lagen om nollte potensen (baklänges) samt andra potenslagen:
+
<big>Generellt:</big>
 +
 
 +
<div class="ovnC">
 +
'''Påstående''':
 +
 
 +
<div class="border-divblue">
 +
===== <b><span style="color:#931136">Lagen om negativ exponent</span></b> <math> \quad a\,^{-x} \; = \; \displaystyle {1 \over a\,^x} </math> =====
 +
</div> <!-- border-divblue -->
 +
 
 +
'''Bevis''':
  
 
::::<big><math> \displaystyle{1 \over a^x} \; = \; \displaystyle{a^0 \over a^x} \; = \; a^{0-x} \; = \; a^{-x} </math></big>
 
::::<big><math> \displaystyle{1 \over a^x} \; = \; \displaystyle{a^0 \over a^x} \; = \; a^{0-x} \; = \; a^{-x} </math></big>
  
Vi får påståendet, fast baklänges.
+
In den första likheten har vi använt lagen om nollte potens baklänges<span style="color:black">:</span> <math> \; 1 = a^0 \; </math>.
</div> <!-- tolv4a -->
+
  
 +
In den andra likheten har vi använt andra potenslagen<span style="color:black">:</span> <math> \; \displaystyle {a^x \over a^y} \; = \; a\,^{x \, - \, y} \; </math>.
  
<div class="exempel"> <!-- exempel4 -->
+
Efter dessa steg får vi påståendet, fast baklänges.
== <b><span style="color:#931136">Exempel på potenser med negativa exponenter</span></b> ==
+
</div>
<big>
+
  
::::<big><math> \displaystyle{a^{-1} \, = \, {1 \over a^1} \, = \, {1 \over a}} </math></big>
 
  
 +
== <b><span style="color:#931136">Potenser med exponenten <math> \, 0 \, </math></span></b> ==
  
::::<big><math> \displaystyle{a^{-2} \, = \, {1 \over a^2} \, = \, {1 \over a \cdot a}} </math></big>
+
<big>Exempel:</big>
  
 +
<div class="ovnE">
 +
<big><math> \quad \displaystyle 2\,^{\color{Red} 0} \;\; = \;\; 1 \quad </math>
 +
</big></div>
  
::::<big><math> \displaystyle{a^{-3} \, = \, {1 \over a^3} \, = \, {1 \over a \cdot a \cdot a}} </math></big>
 
</big>
 
</div> <!-- exempel4 -->
 
  
 +
<big>Generellt:</big>
  
<div class="tolv"> <!-- tolv5 -->
+
<div class="ovnC">
Att potenser med negativa exponenter är en naturlig fortsättning på potenser med positiva exponenter med nollte potensen däremellan illustrerar följande exempel:
+
'''Påstående''':
</div> <!-- tolv5 -->
+
  
 +
<div class="border-divblue">
 +
===== <b><span style="color:#931136">Lagen om nollte potens</span></b> <math> \quad a^0 \; = \; 1 \; </math> =====
 +
</div> <!-- border-divblue -->
  
<div class="exempel"> <!-- exempel4 -->
+
'''Bevis''':
== <b><span style="color:#931136">Varför är <math> \; 5\,^0 \, = \, 1 \; </math>?</span></b> ==
+
<big>
+
  
::::<math> \;\; 5^4 \; = \; {\color{Red} 1} \cdot 5 \cdot 5 \cdot 5 \cdot 5 </math>
+
Påståendet kan bevisas genom att använda andra potenslagen:
  
::::<math> \;\; 5^3 \; = \; {\color{Red} 1} \cdot 5 \cdot 5 \cdot 5 </math>
+
::::<big><math> \displaystyle{a^x \over a^x} \; = \; a^{x-x} \; = \; a^0 </math></big>
  
::::<math> \;\; 5^2 \; = \; {\color{Red} 1} \cdot 5 \cdot 5 </math>
+
Å andra sidan vet vi att ett bråk med samma täljare som nämnare har värdet <math> \, 1 </math>:
  
::::<math> \;\; 5^1 \; = \; {\color{Red} 1} \cdot 5 </math>
+
::::<big><math> \displaystyle{a^x \over a^x} \; = \; 1 </math></big>
  
::::<math> \;\; {\color{Red} {5^0 \; = \; 1}} </math>
+
Av raderna ovan följer påståendet:
  
::::<math> \;\; 5^{-1} \; = \; \displaystyle{{\color{Red} 1} \over 5} </math>
+
::::<big><math> a^0 \; = \; 1 </math></big>
 +
</div>
  
::::<math> \;\; 5^{-2} \; = \; \displaystyle{{\color{Red} 1} \over 5 \cdot 5} </math>
 
  
::::<math> \;\; 5^{-3} \; = \; \displaystyle{{\color{Red} 1} \over 5 \cdot 5 \cdot 5} </math>
+
<big>I båda föregående påståenden ska alltid gälla<span style="color:black">:</span> <math> \quad x \, </math> heltal <math> > 0 \, </math> och <math> \, a \, \neq 0 \quad </math>.
  
::::<math> \;\; 5^{-4} \; = \; \displaystyle{{\color{Red} 1} \over 5 \cdot 5 \cdot 5 \cdot 5 } </math>
 
  
Att <math> \; {\color{Red} 1} </math>-orna följer med hela tiden beror på att multiplikationens ''enhet'' är <math> \, {\color{Red} 1} </math>, dvs <math> \, a \cdot {\color{Red} 1} \, = \, a </math>. Därför blir endast <math> \, {\color{Red} 1} \, </math> kvar, när vi kommer till <math> \, {\color{Red} {5^0}} \, </math> då alla <math> \, 5</math>-or har försvunnit.
+
Exemplet nedan ska illustrera lagen ovan genom att visa följande:
</big>
+
</div> <!-- exempel4 -->
+
  
 +
Potenser med negativa exponenter är en naturlig fortsättning på potenser med positiva exponenter.
  
<div class="tolv"> <!-- tolv5 -->
+
<b><span style="color:red">Nollte potensen</span></b> bildar övergången mellan positiva och negativa exponenter, precis som <math> \, 0 \, </math> är övergången mellan positiva och negativa tal:
Jämför med:
+
</big>
</div> <!-- tolv5 -->
+
  
  
<div class="exempel"> <!-- exempel5 -->
+
== <b><span style="color:#931136">Varför är <math> \; 5\,^0 \, = \, 1 \; </math>?</span></b> ==
== <b><span style="color:#931136">Varför är <math> \; 5 \cdot 0 \, = \, 0 \; </math>?</span></b> ==
+
<big>
+
  
::::<math> \;\; 5 \cdot 4 \; = \; {\color{Red} 0} + 5 + 5 + 5 + 5 </math>
+
<div class="ovnE">
 +
::<math> \;\; 5^4 \; = \; {\color{Red} 1} \cdot 5 \cdot 5 \cdot 5 \cdot 5 </math>
  
::::<math> \;\; 5 \cdot 3 \; = \; {\color{Red} 0} + 5 + 5 + 5 </math>
+
::<math> \;\; 5^3 \; = \; {\color{Red} 1} \cdot 5 \cdot 5 \cdot 5 </math>
  
::::<math> \;\; 5 \cdot 2 \; = \; {\color{Red} 0} + 5 + 5 </math>
+
::<math> \;\; 5^2 \; = \; {\color{Red} 1} \cdot 5 \cdot 5 </math>
  
::::<math> \;\; 5 \cdot 1 \; = \; {\color{Red} 0} + 5 </math>
+
::<math> \;\; 5^1 \; = \; {\color{Red} 1} \cdot 5 </math>
  
::::<math> \;\; {\color{Red} {5 \cdot 0 \; = \; 0}} </math>
+
::<math> \; \boxed{{\color{Red} {5^0 \; = \; 1}}} </math>
  
::::<math> \;\; 5 \cdot (-1) \; = \; {\color{Red} 0} - 5 </math>
+
::<math> \;\; 5^{-1} \; = \; \displaystyle{{\color{Red} 1} \over 5} </math>
  
::::<math> \;\; 5 \cdot (-2) \; = \; {\color{Red} 0} - 5 - 5 </math>
+
::<math> \;\; 5^{-2} \; = \; \displaystyle{{\color{Red} 1} \over 5 \cdot 5} </math>
  
::::<math> \;\; 5 \cdot (-3) \; = \; {\color{Red} 0} - 5 - 5 - 5 </math>
+
::<math> \;\; 5^{-3} \; = \; \displaystyle{{\color{Red} 1} \over 5 \cdot 5 \cdot 5} </math>
  
::::<math> \;\; 5 \cdot (-4) \; = \; {\color{Red} 0} - 5 - 5 - 5 - 5 </math>
+
::<math> \;\; 5^{-4} \; = \; \displaystyle{{\color{Red} 1} \over 5 \cdot 5 \cdot 5 \cdot 5 } </math>
  
Att <math> \; {\color{Red} 0} </math>-orna följer med hela tiden beror på att additionens ''enhet'' är <math> \, {\color{Red} 0} </math>, dvs <math> \, a + {\color{Red} 0} \, = \, a </math>. Därför blir endast <math> \, {\color{Red} 0} \, </math> kvar, när vi kommer till <math> \, {\color{Red} {5 \cdot 0}} \, </math> då alla <math> \, 5</math>-or har försvunnit.
+
Att <math> \; {\color{Red} 1} </math>-orna följer med hela tiden beror på att <b><span style="color:red">multiplikationens enhet</span></b> är <math> \, {\color{Red} 1} </math>, dvs <math> \, a \cdot {\color{Red} 1} \, = \, a </math>.
</big>
+
 
</div> <!-- exempel5 -->
+
Därför blir endast <math> \, {\color{Red} 1} \, </math> kvar, när vi kommer till <math> \, {\color{Red} {5^0}} \, </math> då alla <math> \, 5</math>-or har försvunnit.
 +
</div>
  
  
 
== <b><span style="color:#931136">Potenser med rationella exponenter</span></b> ==
 
== <b><span style="color:#931136">Potenser med rationella exponenter</span></b> ==
 
<div class="tolv"> <!-- tolv6 -->
 
<div class="tolv"> <!-- tolv6 -->
Potenser med exponenter som är [[1.1_Om_tal#Olika_typer_av_tal|rationella tal]] (bråktal) kan användas för att beräkna (högre) rötter.
+
Här ska vi lägga till [[Potenser#Potenslagarna|<b><span style="color:blue">Potenslagarna</span></b>]] ytterligare tre lagar om potenser med rationella exponenter.
  
 +
Potenser med rationella exponenter är potenser som har [http://34.248.89.132:1800/index.php?title=1.1_Om_tal#Olika_typer_av_tal <b><span style="color:red">rationella tal</span></b>] (bråktal) i exponenten.
  
'''Påstående (högre rötter)''':
+
De är bara ett annat sätt att skriva rötter, både kvadratrötter och högre rötter:
  
:::<big><math> a^{1 \over n} \; = \; \sqrt[n]{a} \; </math></big> <math> , \qquad n\neq 0 </math>
+
'''Påstående''':
 +
 
 +
<div class="border-divblue">
 +
===== <b><span style="color:#931136">Lagen om kvadratroten</span></b> <math> \quad a^{1 \over 2} \; = \; \sqrt{a} </math> =====
 +
</div> <!-- border-divblue -->
 +
 
 +
'''Bevis''':
 +
 
 +
Vi multiplicerar <math> a </math><big><math>^{1 \over 2} </math></big> två gånger med sig själv och använder första potenslagen:
 +
 
 +
:::<big><math> \displaystyle a^{1 \over 2} \cdot a^{1 \over 2} \; = \; a^{{1 \over 2} + {1 \over 2}} \; = \; a^{2 \over 2} \; = \; a^1 \; = \; a </math></big>
 +
 
 +
Vi drar kvadratroten ur båda leden och går vidare<span style="color:black">:</span>
 +
 
 +
:::<big><math>\begin{array}{rclcl}    a^{1 \over 2} \cdot a^{1 \over 2} & = & a        & \qquad | & \sqrt{\,.\,} \\
 +
                              \sqrt{a^{1 \over 2} \cdot a^{1 \over 2}} & = & \sqrt{a} &          &              \\
 +
                                                        a^{1 \over 2}  & = & \sqrt{a} & \qquad   &              \\
 +
              \end{array}</math></big>
 +
'''V.s.b.''' &nbsp; ('''V'''ilket '''s'''kulle '''b'''evisas)
 +
 
 +
I följande ska <math> \; n \; </math> vara ett heltal <math> > 0 </math> och <math> \, a \, \neq 0 </math>.
 +
 
 +
'''Påstående''':
 +
 
 +
<div class="border-divblue">
 +
===== <b><span style="color:#931136">Lagen om högre rötter</span></b> <math> \quad a^{1 \over n} \; = \; \sqrt[n]{a} </math> =====
 +
</div> <!-- border-divblue -->
  
 
'''Bevisidé''':
 
'''Bevisidé''':
  
Vi tar specialfallet <math> n=3 </math>, multiplicerar <math> a </math><big><math>^{1 \over 3} </math></big> tre gånger med sig själv och använder potenslagen om produkt av potenser med samma bas:
+
Vi visar påståendet för specialfallet <math> \, n=3 </math>:
 +
 
 +
Vi multiplicerar <math> a </math><big><math>^{1 \over 3} </math></big> tre gånger med sig själv och använder första potenslagen:
  
 
:::<big><math> \displaystyle a^{1 \over 3} \cdot a^{1 \over 3} \cdot a^{1 \over 3} \; = \; a^{{1 \over 3} + {1 \over 3} + {1 \over 3}} \; = \; a^{3 \over 3} \; = \; a^1 \; = \; a </math></big>
 
:::<big><math> \displaystyle a^{1 \over 3} \cdot a^{1 \over 3} \cdot a^{1 \over 3} \; = \; a^{{1 \over 3} + {1 \over 3} + {1 \over 3}} \; = \; a^{3 \over 3} \; = \; a^1 \; = \; a </math></big>
  
Definitionen för 3:e roten ur <math> a </math> är<span style="color:black">:</span>
+
Vi drar 3:e roten ur båda leden och går vidare<span style="color:black">:</span>
 +
:::<big><math>\begin{array}{rclcl}    a^{1 \over 3} \cdot a^{1 \over 3} \cdot a^{1 \over 3} & = & a        & \qquad | & \sqrt[3]{\,.\,} \\
 +
                            \sqrt[3]{a^{1 \over 3} \cdot a^{1 \over 3} \cdot a^{1 \over 3}} & = & \sqrt[3]{a} &          &              \\
 +
                                                                            a^{1 \over 3}  & = & \sqrt[3]{a} & \qquad  &              \\
 +
        \end{array}</math></big>
 +
'''V.s.b.'''
  
<big><math> \qquad\quad \displaystyle \sqrt[3]{a} \; = \; </math></big> Tal som 3 gånger multiplicerat med sig själv ger <math> a </math>.
+
Denna bevisidé kan vidareutvecklas till det allmänna fallet, där <math> \, m \, </math> ska vara ett heltal, <math> \, n \, </math> ett heltal <math> > 0 </math> och <math> \, a \, \neq 0 </math>:
  
Men enligt ovan är det tal som 3 gånger med sig själv ger <math> a </math>, just <math> a </math> <big><math>^{1 \over 3} </math></big>. Alltså måste detta tal vara lika med 3:e roten ur <math> a </math>:
+
<div class="border-divblue">
 +
===== <b><span style="color:#931136">Lagen om rationell exponent</span></b> <math> \quad \displaystyle a^{m \over n} \; = \; \sqrt[n]{a^m} </math> =====
 +
</div> <!-- border-divblue -->
  
:::<big><math> \displaystyle a^{1 \over 3} \; = \; \sqrt[3]{a} </math></big>
+
Tabellen över [[Potenser#Potenslagarna|<b><span style="color:blue">Potenslagarna</span></b>]] borde kompletteras med dessa lagar för rationella exponenter.
  
Denna bevisidé kan vidareutvecklas till det allmänna fallet för alla heltal <math> m\, </math> och <math> n\neq 0 \, </math> '''(Lagen om rationell exponent)''':
 
 
:::<big><math> a^{m \over n} \; = \; \sqrt[n]{a^m} </math></big>
 
 
</div> <!-- tolv6 -->
 
</div> <!-- tolv6 -->
  
Rad 324: Rad 327:
 
Anta i fortsättningen att <math> \, x \, </math> är en okänd variabel och <math> b\, </math> och <math> c\, </math> givna konstanter <math> \neq 0 </math> .  
 
Anta i fortsättningen att <math> \, x \, </math> är en okänd variabel och <math> b\, </math> och <math> c\, </math> givna konstanter <math> \neq 0 </math> .  
  
::Funktioner av typ <math> y = x^3\, </math> kallas <strong><span style="color:red">potensfunktioner</span></strong>, generellt <math> \; y = c \cdot x^b\, </math>.
+
::Funktioner av typ <math> y = x^3\, </math> kallas för <b><span style="color:red">potensfunktioner</span></b>, generellt <math> \; y = c \cdot x^b\, </math>.
 +
 
 +
::Ekvationer av typ <math> x^3\, = 8 </math> kallas för <b><span style="color:red">potensekvationer</span></b>, generellt <math> \; x^b\, = c </math>.
 +
 
 +
I potensfunktioner och -ekvationer förekommer <math> \, x \, </math> i <b><span style="color:red">basen</span></b>.
 +
 
 +
<div class="border-divblue">Potensekvationer löses genom <b><span style="color:red">rotdragning</span></b>.</div>
  
::Ekvationer av typ <math> x^3\, = 8 </math> kallas <strong><span style="color:red">potensekvationer</span></strong>, generellt <math> \; x^b\, = c </math>.
+
Rotdragning är ekvivalent (identiskt) med potentiering med rationella exponenter.
  
I potensfunktioner och -ekvationer förekommer <math> \, x \, </math> i basen. Potensekvationer löses genom <strong><span style="color:red">rotdragning</span></strong>. För t.ex. potensekvationen <math> x^3\, = 8 </math> finns det två olika sätt att beskriva lösningen via rotdragning:
+
För t.ex. potensekvationen <math> x^3\, = 8 </math> finns det två olika sätt att beskriva lösningen:
  
:::<math>\begin{align} x^3 & = 8 \qquad & | \; \sqrt[3]{\;\;} \\
+
:::<big><math>\begin{array}{rclcl}   x^3 & = & 8           & \qquad | & \sqrt[3]{\,.\,} \\
                      \sqrt[3]{x^3} & = \sqrt[3]{8}                     \\
+
                            \sqrt[3]{x^3} & = & \sqrt[3]{8} &          &                \\
                                  x & = 2                               \\
+
                                        x & = & 2           &          &                \\
                  \end{align}</math>
+
              \end{array}</math></big>
  
Alternativt (med rationell exponent):
+
Alternativt kan rötter skrivas som potenser med rationella exponenter:
  
:::<math>\begin{align} x^3 & = 8 \qquad & | \; (\;\;\;)^{1 \over 3} \; \text{samma som} \; \sqrt[3]{\;\;} \\
+
:::<big><math>\begin{array}{rclcl}    x^3 & = & 8             & \qquad | & (\,\cdot\,)^{1 \over 3} \\
                  (x^3)^{1 \over 3} & = 8^{1 \over 3}                 \\
+
                        (x^3)^{1 \over 3} & = & 8^{1 \over 3} &          &                        \\
              x^{3\cdot{1 \over 3}} & = 8^{1 \over 3}                 \\
+
                    x^{3\cdot{1 \over 3}} & = & 8^{1 \over 3} &          &                        \\
                                  x  & = 2                             \\
+
                                      x  & = & 2             &          &                        \\
                  \end{align}</math>
+
              \end{array}</math></big>
  
Det alternativa sättet att lösa ekvationen ovan visar att rötter även kan uppfattas och skrivas som [[Potenser#Potenser_med_rationella_exponenter|<strong><span style="color:blue">potenser med rationella exponenter</span></strong>]].
+
I övergången från den andra till den tredje raden har den 3:e potenslagen använts på vänsterledet.
 
</div> <!-- tolv7 -->
 
</div> <!-- tolv7 -->
  
  
== Blandade exempel ==
+
== <b><span style="color:#931136">Blandade exempel</span></b> ==
 
[[Image: Potens_Ex_1.jpg]]
 
[[Image: Potens_Ex_1.jpg]]
  
Rad 377: Rad 386:
  
  
[[Matte:Copyrights|Copyright]] © 2010-2015 Math Online Sweden AB. All Rights Reserved.
+
[[Matte:Copyrights|Copyright]] © 2010-2019 Math Online Sweden AB. All Rights Reserved.

Nuvarande version från 22 januari 2019 kl. 17.46

        <<  Repetitioner          Genomgång          Quiz          Övningar          1:a avsnitt: Polynom  >>      


Potens Bas Exponent 80.jpg            

Exempel på potens:

\[ 2\,^{\color{Red} 3} \; = \;\; \underbrace{2 \, \cdot \, 2 \, \cdot \, 2}_{{\color{Red} 3}\;\times} \; = \; 8\]

Potens = upprepad multiplikation

av \( \, 2 \, \) med sig själv, \( \, {\color{Red} 3} \, \) gånger.


OBS!   Förväxla inte begreppen: \( \, 2\,^3 \, \) är själva potensen, medan \( \, {\color{Red} 3} \, \) är exponenten och \( \, {\color{green} 2}\, \) förstås basen.

Exponenten \( \, {\color{Red} 3} \, \) är inget tal som ingår i beräkningen, utan endast en information om att:

\( \, 2 \, \) ska multipliceras \( \, {\color{Red} 3} \, \) gånger med sig själv, en förkortning för upprepad multiplikation (jfr. upprepad addition).


Exempel

Förenkla: \( \qquad \displaystyle{2\,^3 \cdot \; 2\,^5 \over 2\,^4} \)


Lösning: \( \qquad \displaystyle{{2\,^3 \cdot \; 2\,^5 \over 2\,^4} \, = \, {2 \cdot 2 \cdot 2 \quad \cdot \quad 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \over 2 \cdot 2 \cdot 2 \cdot 2} \, = \, {2 \cdot 2 \cdot 2 \quad \cdot \quad 2 \cdot \cancel{2 \cdot 2 \cdot 2 \cdot 2} \over \cancel{2 \cdot 2 \cdot 2 \cdot 2}} \, = \, 2 \cdot 2 \cdot 2 \cdot 2 \, = \, 4 \cdot 4 \, = \, 16} \)

OBS!   Förenkla alltid först, räkna sedan!

Snabbare: \( \qquad\!\! \displaystyle{{2\,^3 \cdot \; 2\,^5 \over 2\,^4} \, = \, 2\,^{3\,+\,5\,-\,4} \, = \, 2\,^4 \, = \, 2 \cdot 2 \cdot 2 \cdot 2 \, = \, 4 \cdot 4 \, = \, 16} \)

För att förstå den snabbare lösningen se Potenslagarna.


Generellt:

Potenser med positiva exponenter

Potensen \( \, a\,^{\color{Red} x} \, \) med positiv exponent (\( x \, \) heltal \( > 0 \, \) och \( \, a \, \neq 0 \)) kan definieras som:

Upprepad multiplikation av \( \, a \, \) med sig själv, \( \, {\color{Red} x} \, \) gånger:
\( \quad a\,^{\color{Red} x} = \underbrace{a \cdot a \cdot a \cdot \quad \ \cdots \quad \cdot a}_{{\color{Red} x}\;{\rm gånger}} \)


Potenslagarna

Första potenslagen: \( \qquad\qquad\quad\;\, a^x \cdot a^y \; = \; a\,^{x \, + \, y} \qquad\qquad \)


Andra potenslagen: \( \qquad\qquad\qquad\;\;\; \displaystyle {a^x \over a^y} \; = \; a\,^{x \, - \, y} \qquad\qquad \)


Tredje potenslagen: \( \qquad\qquad\qquad \displaystyle {(a^x)^y} \; = \; a\,^{x \, \cdot \, y} \qquad\qquad \)


Lagen om nollte potens: \( \qquad\qquad\quad\;\;\, a\,^0 \; = \; 1 \qquad\qquad \)


Lagen om negativ exponent: \( \qquad\quad\;\;\; a\,^{-x} \; = \; \displaystyle {1 \over a\,^x} \qquad\qquad \)


Potens av en produkt: \( \qquad\qquad\;\, (a \cdot b)\,^x \; = \; a\,^x \cdot b\,^x \qquad\qquad \)


Potens av en kvot: \( \qquad\qquad\qquad\, \left(\displaystyle {a \over b}\right)^x \; = \; \displaystyle {a\,^x \over b\,^x} \qquad\qquad \)


Dessa lagar gäller för potenser där baserna \( \, a,\,b \, \) är tal \( \, \neq 0 \, \) och exponenterna \( \, x,\,y \, \) är godtyckliga tal.


Exempel på första potenslagen

Förenkla: \( \quad\;\; a\,^2 \, \cdot \, a\,^3 \)


Lösning:

\( a\,^2 \cdot a\,^3 \; = \; \underbrace{a \cdot a}_{2\;\times} \; \cdot \; \underbrace{a \cdot a \cdot a}_{3\;\times} \; = \; \underbrace{a \cdot a \cdot a \cdot a \cdot a}_{{\color{Red} 5}\;\times} \; = \; a\,^{\color{Red} 5}\)

Snabbare:

\( a\,^2 \cdot a\,^3 \; = \; a\,^{2\,+\,3} = \; a\,^{\color{Red} 5} \)


Den snabbare lösningen ovan är ett exempel på den första potenslagen. Nedan följer ett exempel på den andra potenslagen.


Exempel på andra potenslagen

\( \displaystyle {a\,^{\color{Red} 5} \over a\,^{\color{Red} 3}} \; = \; {a \cdot a \cdot a \cdot a \cdot a \; \over \; a \cdot a \cdot a} \; = \; {a \cdot a \cdot \cancel{a \cdot a \cdot a} \; \over \; \cancel{a \cdot a \cdot a}} \; = \; a \cdot a \; = \; a\,^2 \)

Snabbare:

\( \displaystyle {a\,^{\color{Red} 5} \over a\,^{\color{Red} 3}} \; = \; a\,^{{\color{Red} {5\,-\,3}}} \; = \; a\,^2 \)


Potensbegreppet definierades inledningsvis endast för positiva exponenter. Men den definitionen duger varken för negativa exponenter eller för exponenten \( \, 0 \, \):

Antalet multiplikationer av basen med sig själv kan inte vara negativt eller \( \, 0 \, \). Det behövs nya definitioner resp. slutsatser.


Potenser med negativa exponenter

Hur raknar du negativa exponenter 20.jpg


Potens med negativ exponent:

\( \qquad \displaystyle 2\,^{\color{Red} {-3}} \; = \;\; \frac{1}{2\,^{\color{Red} {3}}} \; = \; \frac{1}{8} \quad \)

Invertera potensen med positiv exponent.


Att "invertera" t.ex. \( \, 10 \, \) ger \( \, \displaystyle {1 \over 10} \; \).


      

Andra exempel:

\[ \displaystyle{10\,^{-1} \, = \, {1 \over 10\,^1} \, = \, {1 \over 10} \, = \, 0,1} \]
\[ \displaystyle{10\,^{-2} \, = \, {1 \over 10\,^2} \, = \, {1 \over 10 \cdot 10} \, = \, {1 \over 100} \, = \, 0,01} \]
\[ \displaystyle{10\,^{-3} \, = \, {1 \over 10\,^3} \, = \, {1 \over 10 \cdot 10 \cdot 10} \, = \, {1 \over 1000} \, = \, 0,001} \]

Generellt:

Påstående:

Lagen om negativ exponent \( \quad a\,^{-x} \; = \; \displaystyle {1 \over a\,^x} \)

Bevis:

\( \displaystyle{1 \over a^x} \; = \; \displaystyle{a^0 \over a^x} \; = \; a^{0-x} \; = \; a^{-x} \)

In den första likheten har vi använt lagen om nollte potens baklänges: \( \; 1 = a^0 \; \).

In den andra likheten har vi använt andra potenslagen: \( \; \displaystyle {a^x \over a^y} \; = \; a\,^{x \, - \, y} \; \).

Efter dessa steg får vi påståendet, fast baklänges.


Potenser med exponenten \( \, 0 \, \)

Exempel:

\( \quad \displaystyle 2\,^{\color{Red} 0} \;\; = \;\; 1 \quad \)


Generellt:

Påstående:

Lagen om nollte potens \( \quad a^0 \; = \; 1 \; \)

Bevis:

Påståendet kan bevisas genom att använda andra potenslagen:

\( \displaystyle{a^x \over a^x} \; = \; a^{x-x} \; = \; a^0 \)

Å andra sidan vet vi att ett bråk med samma täljare som nämnare har värdet \( \, 1 \):

\( \displaystyle{a^x \over a^x} \; = \; 1 \)

Av raderna ovan följer påståendet:

\( a^0 \; = \; 1 \)


I båda föregående påståenden ska alltid gälla: \( \quad x \, \) heltal \( > 0 \, \) och \( \, a \, \neq 0 \quad \).


Exemplet nedan ska illustrera lagen ovan genom att visa följande:

Potenser med negativa exponenter är en naturlig fortsättning på potenser med positiva exponenter.

Nollte potensen bildar övergången mellan positiva och negativa exponenter, precis som \( \, 0 \, \) är övergången mellan positiva och negativa tal:


Varför är \( \; 5\,^0 \, = \, 1 \; \)?

\[ \;\; 5^4 \; = \; {\color{Red} 1} \cdot 5 \cdot 5 \cdot 5 \cdot 5 \]
\[ \;\; 5^3 \; = \; {\color{Red} 1} \cdot 5 \cdot 5 \cdot 5 \]
\[ \;\; 5^2 \; = \; {\color{Red} 1} \cdot 5 \cdot 5 \]
\[ \;\; 5^1 \; = \; {\color{Red} 1} \cdot 5 \]
\[ \; \boxed{{\color{Red} {5^0 \; = \; 1}}} \]
\[ \;\; 5^{-1} \; = \; \displaystyle{{\color{Red} 1} \over 5} \]
\[ \;\; 5^{-2} \; = \; \displaystyle{{\color{Red} 1} \over 5 \cdot 5} \]
\[ \;\; 5^{-3} \; = \; \displaystyle{{\color{Red} 1} \over 5 \cdot 5 \cdot 5} \]
\[ \;\; 5^{-4} \; = \; \displaystyle{{\color{Red} 1} \over 5 \cdot 5 \cdot 5 \cdot 5 } \]

Att \( \; {\color{Red} 1} \)-orna följer med hela tiden beror på att multiplikationens enhet är \( \, {\color{Red} 1} \), dvs \( \, a \cdot {\color{Red} 1} \, = \, a \).

Därför blir endast \( \, {\color{Red} 1} \, \) kvar, när vi kommer till \( \, {\color{Red} {5^0}} \, \) då alla \( \, 5\)-or har försvunnit.


Potenser med rationella exponenter

Här ska vi lägga till Potenslagarna ytterligare tre lagar om potenser med rationella exponenter.

Potenser med rationella exponenter är potenser som har rationella tal (bråktal) i exponenten.

De är bara ett annat sätt att skriva rötter, både kvadratrötter och högre rötter:

Påstående:

Lagen om kvadratroten \( \quad a^{1 \over 2} \; = \; \sqrt{a} \)

Bevis:

Vi multiplicerar \( a \)\(^{1 \over 2} \) två gånger med sig själv och använder första potenslagen:

\( \displaystyle a^{1 \over 2} \cdot a^{1 \over 2} \; = \; a^{{1 \over 2} + {1 \over 2}} \; = \; a^{2 \over 2} \; = \; a^1 \; = \; a \)

Vi drar kvadratroten ur båda leden och går vidare:

\(\begin{array}{rclcl} a^{1 \over 2} \cdot a^{1 \over 2} & = & a & \qquad | & \sqrt{\,.\,} \\ \sqrt{a^{1 \over 2} \cdot a^{1 \over 2}} & = & \sqrt{a} & & \\ a^{1 \over 2} & = & \sqrt{a} & \qquad & \\ \end{array}\)

V.s.b.   (Vilket skulle bevisas)

I följande ska \( \; n \; \) vara ett heltal \( > 0 \) och \( \, a \, \neq 0 \).

Påstående:

Lagen om högre rötter \( \quad a^{1 \over n} \; = \; \sqrt[n]{a} \)

Bevisidé:

Vi visar påståendet för specialfallet \( \, n=3 \):

Vi multiplicerar \( a \)\(^{1 \over 3} \) tre gånger med sig själv och använder första potenslagen:

\( \displaystyle a^{1 \over 3} \cdot a^{1 \over 3} \cdot a^{1 \over 3} \; = \; a^{{1 \over 3} + {1 \over 3} + {1 \over 3}} \; = \; a^{3 \over 3} \; = \; a^1 \; = \; a \)

Vi drar 3:e roten ur båda leden och går vidare:

\(\begin{array}{rclcl} a^{1 \over 3} \cdot a^{1 \over 3} \cdot a^{1 \over 3} & = & a & \qquad | & \sqrt[3]{\,.\,} \\ \sqrt[3]{a^{1 \over 3} \cdot a^{1 \over 3} \cdot a^{1 \over 3}} & = & \sqrt[3]{a} & & \\ a^{1 \over 3} & = & \sqrt[3]{a} & \qquad & \\ \end{array}\)

V.s.b.

Denna bevisidé kan vidareutvecklas till det allmänna fallet, där \( \, m \, \) ska vara ett heltal, \( \, n \, \) ett heltal \( > 0 \) och \( \, a \, \neq 0 \):

Lagen om rationell exponent \( \quad \displaystyle a^{m \over n} \; = \; \sqrt[n]{a^m} \)

Tabellen över Potenslagarna borde kompletteras med dessa lagar för rationella exponenter.


Potensekvationer

Anta i fortsättningen att \( \, x \, \) är en okänd variabel och \( b\, \) och \( c\, \) givna konstanter \( \neq 0 \) .

Funktioner av typ \( y = x^3\, \) kallas för potensfunktioner, generellt \( \; y = c \cdot x^b\, \).
Ekvationer av typ \( x^3\, = 8 \) kallas för potensekvationer, generellt \( \; x^b\, = c \).

I potensfunktioner och -ekvationer förekommer \( \, x \, \) i basen.

Potensekvationer löses genom rotdragning.

Rotdragning är ekvivalent (identiskt) med potentiering med rationella exponenter.

För t.ex. potensekvationen \( x^3\, = 8 \) finns det två olika sätt att beskriva lösningen:

\(\begin{array}{rclcl} x^3 & = & 8 & \qquad | & \sqrt[3]{\,.\,} \\ \sqrt[3]{x^3} & = & \sqrt[3]{8} & & \\ x & = & 2 & & \\ \end{array}\)

Alternativt kan rötter skrivas som potenser med rationella exponenter:

\(\begin{array}{rclcl} x^3 & = & 8 & \qquad | & (\,\cdot\,)^{1 \over 3} \\ (x^3)^{1 \over 3} & = & 8^{1 \over 3} & & \\ x^{3\cdot{1 \over 3}} & = & 8^{1 \over 3} & & \\ x & = & 2 & & \\ \end{array}\)

I övergången från den andra till den tredje raden har den 3:e potenslagen använts på vänsterledet.


Blandade exempel

Potens Ex 1.jpg


Potens Ex 2.jpg


Potens Ex 3.jpg


Internetlänkar

http://www.youtube.com/watch?v=iYgG4LUqXks

http://www.webbmatte.se/gym/arabiska/2/2_8_4sv.html

http://www.webbmatte.se/gym/arabiska/2/2_8_3sv.html

http://wiki.math.se/wikis/forberedandematte1/index.php/1.3_%C3%96vningar





Copyright © 2010-2019 Math Online Sweden AB. All Rights Reserved.