Skillnad mellan versioner av "2.5 Deriveringsregler"

Från Mathonline
Hoppa till: navigering, sök
m
m
 
(176 mellanliggande versioner av samma användare visas inte)
Rad 1: Rad 1:
 +
__NOTOC__
 
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%"
 
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%"
 
| style="border-bottom:1px solid #797979" width="5px" |  
 
| style="border-bottom:1px solid #797979" width="5px" |  
{{Not selected tab|[[2.4 Derivatans definition|<-- Förra avsnitt]]}}
+
{{Not selected tab|[[2.4 Derivatans definition| <<&nbsp;&nbsp;Förra avsnitt]]}}
 
{{Selected tab|[[2.5 Deriveringsregler|Genomgång]]}}
 
{{Selected tab|[[2.5 Deriveringsregler|Genomgång]]}}
 
{{Not selected tab|[[2.5 Övningar till Deriveringsregler|Övningar]]}}
 
{{Not selected tab|[[2.5 Övningar till Deriveringsregler|Övningar]]}}
 
{{Not selected tab|[[2.5 Fördjupning till Deriveringsregler|Fördjupning]]}}
 
{{Not selected tab|[[2.5 Fördjupning till Deriveringsregler|Fördjupning]]}}
{{Not selected tab|[[2.6 Derivatan av exponentialfunktioner|Nästa avsnitt -->]]}}
+
{{Not selected tab|[[2.6 Derivatan av exponentialfunktioner|Nästa avsnitt&nbsp;&nbsp;>> ]]}}
 
| style="border-bottom:1px solid #797979"  width="100%"| &nbsp;
 
| style="border-bottom:1px solid #797979"  width="100%"| &nbsp;
 
|}
 
|}
  
 +
<!-- [[Media: Lektion 17 Deriveringsregler I Ruta.pdf|<b><span style="color:blue">Lektion 17 Deriveringsregler I</span></b>]]
  
[[Media: Lektion 19 Deriveringsregler I Rutaa.pdf|<strong><span style="color:blue">Lektion 19 Deriveringsregler I</span></strong>]]
+
[[Media: Lektion 18 Deriveringsregler II Ruta.pdf|<b><span style="color:blue">Lektion 18 Deriveringsregler II</span></b>]] -->
  
[[Media: Lektion 20 Deriveringsregler II Ruta.pdf|<strong><span style="color:blue">Lektion 20 Deriveringsregler II</span></strong>]]
 
__NOTOC__
 
 
<div class="tolv"> <!-- tolv1 -->
 
<div class="tolv"> <!-- tolv1 -->
Deriveringsreglerna är till för att kunna derivera de viktigaste typerna av funktioner som förekommer i tillämpningarna, utan att varje gång behöva använda derivatans definition. Här sammanställs själva reglerna. Deras bevis behandlas i fliken [[2.5 Fördjupning till Deriveringsregler|<strong><span style="color:blue">Fördjupning</span></strong>]].
+
Deriveringsreglerna är till för att kunna derivera utan att varje gång behöva använda derivatans definition.
 +
 
 +
Här sammanställs själva reglerna för de viktigaste typerna av funktioner. Deras bevis hittar man i fliken [[2.5 Fördjupning till Deriveringsregler|<b><span style="color:blue">Fördjupning</span></b>]].
 
</div> <!-- tolv1 -->
 
</div> <!-- tolv1 -->
  
Rad 29: Rad 31:
 
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;då <math> \;\; f\,'(x) \; = \: 0 </math>.
 
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;då <math> \;\; f\,'(x) \; = \: 0 </math>.
  
'''Bevis:''' &nbsp;&nbsp; Se [[2.5_Fördjupning_till_Deriveringsregler#Derivatan_av_en_konstant|<strong><span style="color:blue">Fördjupning: Derivatan av en konstant</span></strong>]].
+
'''Bevis:''' &nbsp;&nbsp; Se [[2.5_Fördjupning_till_Deriveringsregler#Derivatan_av_en_konstant|<b><span style="color:blue">Fördjupning: Derivatan av en konstant</span></b>]].
 
</div>
 
</div>
  
Rad 56: Rad 58:
 
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;då <math> \;\; f\,'(x) \; = \; k </math>
 
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;då <math> \;\; f\,'(x) \; = \; k </math>
  
'''Bevis:''' &nbsp;&nbsp; Se [[2.5_Fördjupning_till_Deriveringsregler#Derivatan_av_en_linjär_funktion|<strong><span style="color:blue">Fördjupning: Derivatan av en linjär funktion</span></strong>]].
+
'''Bevis:''' &nbsp;&nbsp; Se [[2.5_Fördjupning_till_Deriveringsregler#Derivatan_av_en_linjär_funktion|<b><span style="color:blue">Fördjupning: Derivatan av en linjär funktion</span></b>]].
 
</div>
 
</div>
 
 
 
 
</td>
 
</td>
 
   <td><math> \qquad </math></td>
 
   <td><math> \qquad </math></td>
Rad 69: Rad 68:
  
 
:::::<math> \;\, f\,'(x) \; = \; -8 </math>
 
:::::<math> \;\, f\,'(x) \; = \; -8 </math>
 +
 +
'''Regel:''' En summa kan man derivera termvis, se [[2.5_Deriveringsregler#Derivatan_av_en_summa_av_funktioner|<b><span style="color:blue">längre fram</span></b>]].
 
</div></td>
 
</div></td>
 
</tr>
 
</tr>
 
</table>
 
</table>
 +
  
 
== <b><span style="color:#931136">Derivatan av en kvadratisk funktion</span></b> ==
 
== <b><span style="color:#931136">Derivatan av en kvadratisk funktion</span></b> ==
Rad 86: Rad 88:
 
då <math> \;\; f\,'(x) \; = \; 2\,a\,x \, + \, b </math>
 
då <math> \;\; f\,'(x) \; = \; 2\,a\,x \, + \, b </math>
  
'''Bevis:''' &nbsp;&nbsp; Se [[2.5_Fördjupning_till_Deriveringsregler#Derivatan_av_en_kvadratisk_funktion|<strong><span style="color:blue">Fördjupning: Derivatan av en kvadratisk funktion</span></strong>]].
+
'''Bevis:''' &nbsp;&nbsp; Se [[2.5_Fördjupning_till_Deriveringsregler#Derivatan_av_en_kvadratisk_funktion|<b><span style="color:blue">Fördjupning: Derivatan av en kvadratisk funktion</span></b>]].
 
</div>
 
</div>
 
 
  
  
Rad 99: Rad 99:
 
'''Exempel 1'''
 
'''Exempel 1'''
  
För funktionen <math> \;\, f(x) \; = \; 5\,x^2 - 3\,x + 6 </math> blir derivatan:
+
För funktionen <math> \;\, f(x) \; = \; 5\,x^2 - 3\,x + 6 \; </math> blir derivatan:
  
 
:::::<math> \;\, f\,'(x) \; = \; 10\,x - 3 </math>
 
:::::<math> \;\, f\,'(x) \; = \; 10\,x - 3 </math>
Rad 105: Rad 105:
 
'''Exempel 2'''
 
'''Exempel 2'''
  
För funktionen &nbsp; <math> f(x) \; = \; -25\,x^2 + 16\,x - 90</math> blir derivatan:
+
För funktionen &nbsp; <math> f(x) \; = \; -25\,x^2 + 16\,x - 90 \; </math> blir derivatan:
  
 
:::::<math> f\,'(x) \; = \; 2\cdot (-25)\,x + 16 \; = \; - 50\,x + 16 </math>
 
:::::<math> f\,'(x) \; = \; 2\cdot (-25)\,x + 16 \; = \; - 50\,x + 16 </math>
</div>
+
</div></td>
 
+
 
+
</td>
+
 
</tr>
 
</tr>
 
</table>
 
</table>
== <b><span style="color:#931136">Derivatan av en potensfunktion</span></b> ==
+
== <b><span style="color:#931136">Derivatan av en potens</span></b> ==
 
<br>
 
<br>
<table>
+
<!-- '''Viktigt specialfall:''' &nbsp;&nbsp;&nbsp; <big><math> {\color{Red} {a \,=\, }} </math></big><math> {\color{Red} 1}\, </math> -->
<tr>
+
  <td><div class="border-divblue">
+
<b>'''Regel:'''
+
 
+
Derivatan av en <math> \, n</math>-te grads potensfunktion är en
+
 
+
<math> \qquad\quad\;\;\; (n-1)</math>-te grads potensfunktion:</b>
+
 
+
Om <math> \;\; f(x) \; = \; a\,x\,^n \quad {\rm där} \quad n,\,a = {\rm const. } </math>
+
 
+
då <math> \;\; f\,'(x) \; = \; n\cdot a\,x\,^{n-1} </math>
+
 
+
</div></td>
+
  <td><math> \qquad </math></td>
+
  <td><div class="ovnE">
+
'''Exempel'''
+
 
+
För funktionen <math> f(x) = 12\,x^4\, </math> blir derivatan:
+
 
+
:::::<math> f\,'(x) = 4\cdot 12\,x^3 = 48\,x^3 </math>
+
</div>
+
 
+
 
+
 
+
</td>
+
</tr>
+
</table>
+
 
+
 
+
<div class="tolv"> <!-- tolv2 -->
+
<strong><span style="color:red">OBS! &nbsp; Konstanten</span></strong> <big><math> {\color{Red} a} </math></big> tas oförändrad över till derivatan.
+
 
+
Regeln om att derivatan av en konstant är <math> 0\, </math> får ingen tillämpning här, därför att konstanten <math> a\, </math> inte är en additiv term här utan bunden till produkten <math> a \cdot x\,^n </math> som en <strong><span style="color:red">faktor</span></strong> framför potensen och därför inte kan separeras från den, se [[2.5_Deriveringsregler#Konstant_faktor_vs._additiv_konstant|<strong><span style="color:blue">Konstant faktor vs. additiv konstant</span></strong>]] och [[2.5_Deriveringsregler#Derivatan_av_en_funktion_med_en_konstant_faktor|<strong><span style="color:blue">Derivatan av en funktion med en konstant faktor</span></strong>]].
+
 
+
 
+
'''Viktigt specialfall:''' &nbsp;&nbsp;&nbsp; <big><math> {\color{Red} {a \,=\, }} </math></big><math> {\color{Red} 1}\, </math>  
+
</div> <!-- tolv2 -->
+
 
<table>
 
<table>
 
<tr>
 
<tr>
Rad 170: Rad 130:
 
'''Exempel 1''' &nbsp;&nbsp;&nbsp; <math> n \,=\, </math> positivt heltal:
 
'''Exempel 1''' &nbsp;&nbsp;&nbsp; <math> n \,=\, </math> positivt heltal:
  
För funktionen <math> f(x) = x^5\, </math> blir derivatan:
+
För funktionen <math> f(x) = x^5 \; </math> blir derivatan:
  
 
:::::<math> f\,'(x) = 5\,x^4 </math>
 
:::::<math> f\,'(x) = 5\,x^4 </math>
Rad 178: Rad 138:
 
</tr>
 
</tr>
 
</table>
 
</table>
 +
  
 
<div class="tolv"> <!-- tolv3 -->
 
<div class="tolv"> <!-- tolv3 -->
Denna regel som kan anses som den viktigaste formel för derivering av elementära funktioner. Alla deriveringsregler vi ställt upp hittills är specialfall av denna regel.
+
Denna regel är den <b><span style="color:red">viktigaste formeln</span></b> för derivering av elementära funktioner. Alla deriveringsregler vi ställt upp hittills är specialfall av denna regel.
  
Dessutom gäller regeln för <strong><span style="color:red">ALLA exponenter</span></strong> <big><math> {\color{Red} n} </math></big>, dvs inte bara för positiva utan även för negativa heltalsexponenter och t.o.m. för bråktal i exponenten.
+
Regeln gäller för <b><span style="color:red">ALLA exponenter</span></b> <big><math> {\color{Red} n} </math></big>, dvs inte bara för positiva (ex. 1) utan även för negativa heltalsexponenter (ex. 2) och t.o.m. för bråktal i exponenten (ex. 3).
 
</div> <!-- tolv3 -->
 
</div> <!-- tolv3 -->
  
Rad 191: Rad 152:
 
Derivera funktionen <math> f(x) = \displaystyle {1 \over x} </math> med hjälp av regeln om derivatan av en potens.
 
Derivera funktionen <math> f(x) = \displaystyle {1 \over x} </math> med hjälp av regeln om derivatan av en potens.
  
Innan vi kan tillämpa denna regel måste vi omvandla <math> \displaystyle {1 \over x} </math> till en potens:
+
Innan vi kan tillämpa denna regel måste vi omvandla <math> \displaystyle {1 \over x} </math> till en potens med hjälp av [[Potenser#Potenslagarna|<b><span style="color:blue">Potenslagarna</span></b>]]<span style="color:black">:</span>
  
::<math> f(x) = {1 \over x} = x^{-1} </math>
+
<math> \qquad \displaystyle f(x) = \boxed{\frac{1}{x}} = x^{-1} \; </math> &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;, se [[Potenser#Lagen_om_negativ_exponent_.5C.28_.5Cquad_a.5C.2C.5E.7B-x.7D_.5C.3B_.3D_.5C.3B_.5Cdisplaystyle_.7B1_.5Cover_a.5C.2C.5Ex.7D_.5C.29|<b><span style="color:blue">Lagen om negativ exponent</span></b>]].
  
Därmed är <math> \,n = -1 </math> och vi kan sätta in <math> \, n = -1 </math> i regeln om derivatan av en potens och får:
+
Därmed är <math> \,n = -1 </math> och vi kan sätta in <math> \, n = -1 </math> i regeln om derivatan av en potens och får<span style="color:black">:</span>
  
::<math> f\,'(x) = (-1)\cdot x^{-1-1} = (-1)\cdot x^{-2} = - \, {1 \over x^2} </math>
+
<math> \qquad \displaystyle f\,'(x) = (-1)\cdot x^{-1-1} = (-1)\cdot x^{-2} = \boxed{\,- \, {1 \over x^2}\,} </math>
 
</div>
 
</div>
 +
 +
 +
<big>
 +
Även i den sista likheten i raden ovan har [[Potenser#Lagen_om_negativ_exponent_.5C.28_.5Cquad_a.5C.2C.5E.7B-x.7D_.5C.3B_.3D_.5C.3B_.5Cdisplaystyle_.7B1_.5Cover_a.5C.2C.5Ex.7D_.5C.29|<b><span style="color:blue">Lagen om negativ exponent</span></b>]] använts.
 +
</big>
  
  
Rad 206: Rad 172:
 
Derivera funktionen <math> f(x) = \sqrt{x} </math> med hjälp av regeln om derivatan av en potens.
 
Derivera funktionen <math> f(x) = \sqrt{x} </math> med hjälp av regeln om derivatan av en potens.
  
Innan vi kan tillämpa denna regel måste vi omvandla <math> \sqrt{x} </math> till en potens:
+
Innan vi kan tillämpa denna regel måste vi omvandla <math> \sqrt{x} </math> till en potens<span style="color:black">:</span>
  
::<math> f(x) = \sqrt{x} = x\,^{1 \over 2} </math>
+
<math> \qquad \displaystyle f(x) = \boxed{\sqrt{x}} = x\,^{1 \over 2} \; </math> &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;, se [[Potenser#Lagen_om_kvadratroten_.5C.28_.5Cquad_a.5E.7B1_.5Cover_2.7D_.5C.3B_.3D_.5C.3B_.5Csqrt.7Ba.7D_.5C.29|<b><span style="color:blue">Lagen om kvadratroten</span></b>]].
  
Därmed är <math> n = {1 \over 2} </math> och vi kan sätta in <math> n = {1 \over 2} </math> i regeln om derivatan av en potens och får:
+
Därmed är <math> n = {1 \over 2} </math> och vi kan sätta in <math> n = {1 \over 2} </math> i regeln om derivatan av en potens och får<span style="color:black">:</span>
  
::<math> f\,'(x) = {1 \over 2}\cdot x\,^{{1 \over 2}-1} = {1 \over 2}\cdot x\,^{-{1 \over 2}} = {1 \over 2}\cdot {1\over x\,^{1 \over 2}} = {1 \over 2}\cdot {1\over \sqrt{x}} = {1 \over 2\, \sqrt{x}} </math>
+
<math> \qquad \displaystyle f\,'(x) = {1 \over 2}\cdot x\,^{{1 \over 2}-1} = {1 \over 2}\cdot x\,^{-{1 \over 2}} = {1 \over 2}\cdot {1\over x\,^{1 \over 2}} = {1 \over 2}\cdot {1\over \sqrt{x}} = \boxed{\,{1 \over 2\, \sqrt{x}}\,} </math>
 
</div>
 
</div>
  
  
== <b><span style="color:#931136">Derivatan av en summa av funktioner</span></b> ==
+
<big>
 +
Även i den näst sista likheten i raden ovan har [[Potenser#Lagen_om_kvadratroten_.5C.28_.5Cquad_a.5E.7B1_.5Cover_2.7D_.5C.3B_.3D_.5C.3B_.5Csqrt.7Ba.7D_.5C.29|<b><span style="color:blue">Lagen om kvadratroten</span></b>]] använts.
 +
</big>
 +
 
 +
 
 +
== <b><span style="color:#931136">Derivatan av en funktion med en konstant faktor</span></b> ==
 
<br>
 
<br>
 
<table>
 
<table>
Rad 223: Rad 194:
 
<b>'''Regel:'''
 
<b>'''Regel:'''
  
En summa av funktioner kan deriveras termvis.</b>
+
En konstant faktor förblir oförändrad vid derivering:</b>
  
:::Om <math> \;\; y    =  f(x) + g(x)\, </math>
+
::Om <math> y    =  a\cdot f(x) \quad {\rm och} \quad a = {\rm const.} </math>
  
:::då <math> \;\; y\,'  =  f\,'(x) + g\,'(x) </math>
+
::då <math> y\,'  =  a\cdot f\,'(x) </math>
  
 
</div>
 
</div>
Rad 235: Rad 206:
 
   <td><math> \qquad </math></td>
 
   <td><math> \qquad </math></td>
 
   <td><div class="ovnE">
 
   <td><div class="ovnE">
'''Exempel 1'''
+
'''Exempel'''
  
För polynomfunktionen
+
För funktionen <math> y \,\, = \,\, 6\cdot \sqrt{x} \; </math> blir derivatan:
  
<math> \quad f(x) = -3\,x^4\,+\,9\,x^3\,-\,8\,x^2\,+\,17\,x\,-\,12 \, </math> blir derivatan<span style="color:back">:</span>
+
:::<math> y\,' \, = \,\, 6\cdot (\sqrt{x})\,' \,= \, 6\cdot {1 \over 2\,\sqrt{x}} \,= \, {6 \over 2\,\sqrt{x}} \,=\, {3 \over \sqrt{x}} </math>
  
<math> \quad f\,'(x) \, = -12\,x^3 + 27\,x^2 - 16\,x + 17 </math>
+
Här har resultatet från Exempel 3 på [[2.5_Deriveringsregler#Derivatan_av_en_potens|<b><span style="color:blue">Derivatan av en potens</span></b>]] använts:
  
Se även [[2.5_Fördjupning_till_Deriveringsregler#Derivatan_av_ett_polynom|<strong><span style="color:blue">Derivatan av ett polynom</span></strong>]].
+
::Derivatan av &nbsp; <math> f(x) = \sqrt{x} </math> &nbsp; är <math> &nbsp; f\,'(x) = \displaystyle {1 \over 2\, \sqrt{x}} </math>
 
</div></td>
 
</div></td>
 
</tr>
 
</tr>
Rad 249: Rad 220:
  
  
<div class="ovnE">
+
<table>
'''Exempel 2'''
+
<tr>
 +
  <td><div class="border-divblue">
 +
'''Tillämpning av regeln ovan på en potensfunktion:'''
  
För funktionen <math> \displaystyle y = {1\over x} + \sqrt{x} </math> blir derivatan:
+
::Om <math> \;\; y \; = \; a\,x\,^n \quad {\rm där} \quad n,\,a = {\rm const. } </math>
  
:::::<math> y\,' \, = - {1\over x^2} + {1 \over 2\,\sqrt{x}} </math>
+
::<math> \;\; y\,' \; = \; n\cdot a\,x\,^{n-1} </math>
  
Här har vi använt de resultat vi fick i Exempel 2 och 3 från regeln om derivatan av en potens, nämligen att:
+
</div></td>
 +
  <td><math> \qquad </math></td>
 +
  <td><div class="ovnE">
 +
'''Exempel'''
  
:::Derivatan av &nbsp; <math> f(x) = \displaystyle {1 \over x} </math> &nbsp; är &nbsp; <math> f\,'(x) = \displaystyle - \, {1 \over x^2} </math> &nbsp; och
+
För funktionen <math> y = 12\,x^4 \; </math> blir derivatan:
  
:::Derivatan av &nbsp; <math> f(x) = \sqrt{x} </math> &nbsp; är <math> &nbsp; f\,'(x) = \displaystyle {1 \over 2\, \sqrt{x}} </math>.
+
:::::<math> y\,' = 4\cdot 12\,x^3 = 48\,x^3 </math>
</div>
+
</div></td>
 +
</tr>
 +
</table>
 +
<div class="tolv"> <!-- tolv2 -->
 +
<b><span style="color:red">OBS! &nbsp; Konstanten</span></b> <big><math> {\color{Red} a} </math></big> tas oförändrad över till derivatan.
 +
 
 +
Regeln om att [[2.5_Deriveringsregler#Derivatan_av_en_konstant|<b><span style="color:blue">derivatan av en konstant</span></b>]] är <math> \, 0\, </math> får ingen tillämpning här, därför att konstanten <math> a\, </math> inte är en additiv term här utan bunden till produkten <math> a \cdot x\,^n </math> som en <b><span style="color:red">faktor</span></b> framför potensen och därför inte kan separeras från den:
 +
</div> <!-- tolv2 -->
 +
 
 +
 
 +
== <b><span style="color:#931136">Konstant faktor vs. additiv konstant</span></b> ==
 +
<div class="tolv"> <!-- tolv5 -->
 +
I funktionen &nbsp;&nbsp;&nbsp; <math> y \,=\, 6 \cdot \sqrt{x} </math> &nbsp; är &nbsp; <math> \, 6 </math> &nbsp; en <b><span style="color:red">konstant faktor</span></b> i funktionsuttrycket.
 +
 
 +
Derivatan blir &nbsp; <math> y' = 6\cdot \displaystyle {1 \over 2\,\sqrt{x}} = {6 \over 2\,\sqrt{x}} = {3 \over \sqrt{x}} </math> &nbsp; enligt regeln ovan: "En konstant faktor förblir oförändrad vid derivering".
 +
 
 +
I funktionen &nbsp;&nbsp;&nbsp; <math> y \,=\, 6 \,+\, \sqrt{x} </math> &nbsp; är &nbsp; <math> \, 6 </math> en <b><span style="color:red">additiv konstant</span></b> i funktionsuttrycket.
 +
 
 +
Derivatan blir &nbsp; <math> y' = 0 \,+\,  \displaystyle {1 \over 2\,\sqrt{x}} = {1 \over 2\,\sqrt{x}} </math> &nbsp; enligt regeln om att derivatan av en konstant är <math> \, 0\, </math>.
 +
 
 +
Att derivatan av en konstant är <math> 0\, </math> innebär <b><span style="color:red">inte</span></b> att derivatan av &nbsp; <math> a\cdot f(x) </math> &nbsp; blir &nbsp; <math> 0\cdot f\,'(x) </math> &nbsp; och därmed <math> 0\, </math>. Det finns ingen regel som säger att en produkt av funktioner kan deriveras faktorvis, se [[2.5_Deriveringsregler#Produkt_och_kvot_av_funktioner|<b><span style="color:blue">Produkt och kvot av funktioner</span></b>]].
 +
 
 +
[[2.5_Deriveringsregler#Derivatan_av_en_konstant|<b><span style="color:blue">Regeln om derivatan av en konstant</span></b>]] innebär: Derivatan av en "ensam" konstant är <math> 0\, </math>. Förekommer konstanten däremot additivt i ett uttryck måste regeln preciseras:
 +
</div> <!-- tolv5 -->
  
  
== <b><span style="color:#931136">Derivatan av en funktion med en konstant faktor</span></b> ==
 
<br>
 
 
<table>
 
<table>
 
<tr>
 
<tr>
Rad 271: Rad 268:
 
<b>'''Regel:'''
 
<b>'''Regel:'''
  
En konstant faktor förblir oförändrad vid derivering:</b>
+
Derivatan av en additiv konstant är <math> 0\, </math>.</b>
  
::Om <math> y     = a\cdot f(x) \quad {\rm och} \quad a = {\rm const.} </math>
+
Om <math> \; y \; = \; c + f(x)\, \quad {\rm där} \quad c = {\rm const.} </math>
  
::då <math> y\,' = a\cdot f\,'(x) </math>
+
då <math> \; y' \; = \; 0 \,+\, f\,'(x) = f\,'(x) </math>.
  
 
</div>
 
</div>
Rad 285: Rad 282:
 
'''Exempel'''
 
'''Exempel'''
  
För funktionen <math> y \,\, = \,\, 6\cdot \sqrt{x} </math> blir derivatan:
+
För funktionen <math> \; f(x) \; = \; -5 + \displaystyle {1\over x} \; </math> blir derivatan:
  
:::::<math> y\,' \, = \,\, 6\cdot {1 \over 2\,\sqrt{x}} \,=\, {6 \over 2\,\sqrt{x}} \,=\, {3 \over \sqrt{x}} </math>
+
:::::<math> \; f\,'(x) \; = \; 0 \,+\, \left(\displaystyle {- {1\over x^2}}\right) = - {1\over x^2} </math>
  
Även här har vi använt resultatet från [[2.5_Deriveringsregler#Derivatan_av_en_potensfunktion|<strong><span style="color:blue">Derivatan av en potens, Exempel 3</span></strong>]], nämligen:
+
Här har resultatet från Exempel 2 på [[2.5_Deriveringsregler#Derivatan_av_en_potens|<b><span style="color:blue">Derivatan av en potens</span></b>]] använts:
  
::Derivatan av &nbsp; <math> f(x) = \sqrt{x} </math> &nbsp; är <math> &nbsp; f\,'(x) = \displaystyle {1 \over 2\, \sqrt{x}} </math>.
+
:::Derivatan av &nbsp; <math> y = \displaystyle {1 \over x} </math> &nbsp; är &nbsp; <math> y\,' = \displaystyle - \, {1 \over x^2} </math>
 
</div></td>
 
</div></td>
 
</tr>
 
</tr>
 
</table>
 
</table>
  
 +
<big>I exemplet ovan användes redan följande regel:</big>
  
== <b><span style="color:#931136">Konstant faktor vs. additiv konstant</span></b> ==
 
<div class="tolv"> <!-- tolv5 -->
 
I funktionen &nbsp;&nbsp;&nbsp; <math> y \,=\, 6 \cdot \sqrt{x} </math> &nbsp; är &nbsp; <math> \, 6 </math> &nbsp; en <strong><span style="color:red">konstant faktor</span></strong> i funktionsuttrycket.
 
  
Derivatan blir &nbsp; <math> y' = 6\cdot \displaystyle {1 \over 2\,\sqrt{x}} = {6 \over 2\,\sqrt{x}} = {3 \over \sqrt{x}} </math> &nbsp; enligt regeln om [[2.5_Deriveringsregler#Derivatan_av_en_funktion_med_en_konstant_faktor|<strong><span style="color:blue">derivatan av en funktion med en konstant faktor</span></strong>]].
+
== <b><span style="color:#931136">Derivatan av en summa av funktioner</span></b> ==
 +
<br>
 +
<table>
 +
<tr>
 +
  <td><div class="border-divblue">
 +
<b>'''Regel:'''
  
I funktionen &nbsp;&nbsp;&nbsp; <math> y \,=\, 6 \,+\, \sqrt{x} </math> &nbsp; är &nbsp; <math> \, 6 </math> en <strong><span style="color:red">additiv konstant</span></strong> i funktionsuttrycket.
+
En <span style="color:red">summa</span> av funktioner kan deriveras termvis:</b>
  
Derivatan blir &nbsp; <math> y' = 0 \,+\, \displaystyle {1 \over 2\,\sqrt{x}} = {1 \over 2\,\sqrt{x}} </math> &nbsp; enligt regeln om [[2.5_Deriveringsregler#Derivatan_av_en_konstant|<strong><span style="color:blue">derivatan av en konstant</span></strong>]].
+
:::Om <math> \;\; y     f(x) + g(x)\, </math>
  
Att derivatan av en konstant är <math> 0\, </math> innebär <strong><span style="color:red">inte</span></strong> att derivatan av &nbsp; <math> a\cdot f(x) </math> &nbsp; blir &nbsp; <math> 0\cdot f\,'(x) </math> &nbsp; och därmed <math> 0\, </math>. Det finns ingen regel som säger att en produkt av funktioner kan deriveras faktorvis, se [[2.5_Deriveringsregler#Produkt_och_kvot_av_funktioner|<strong><span style="color:blue">Produkt och kvot av funktioner</span></strong>]].
+
:::då <math> \;\; y\,'  =  f\,'(x) + g\,'(x) </math>
  
Regeln om derivatan av en konstant innebär: Derivatan av en "ensam" konstant är <math> 0\, </math>. Förekommer konstanten däremot additivt i ett uttryck måste regeln preciseras:
+
</div>
</div> <!-- tolv5 -->
+
  
  
'''Regel:'''
+
</td>
<div class="border-div2"><big>
+
  <td><math> \qquad </math></td>
<b>Derivatan av en additiv konstant är <math> 0\, </math>.</b>
+
  <td><div class="ovnE">
 +
'''Exempel 1'''
  
Om <math> \; y \; = \; c + f(x)\, \quad {\rm där} \quad c = {\rm const.} </math>
+
För polynomfunktionen
  
<math> \; y' \; = \; 0 \,+\, f\,'(x) = f\,'(x) </math>.
+
<math> \quad f(x) = -3\,x^4\,+\,9\,x^3\,-\,8\,x^2\,+\,17\,x\,-\,12 \; </math> blir derivatan<span style="color:back">:</span>
</big></div>
+
  
 +
<math> \quad f\,'(x) \, = -12\,x^3 + 27\,x^2 - 16\,x + 17 </math>
  
<div class="exempel"> <!-- exempel8 -->
+
Se även [[2.5_Fördjupning_till_Deriveringsregler#Derivatan_av_ett_polynom|<b><span style="color:blue">Derivatan av ett polynom</span></b>]].
'''Exempel:'''
+
</div></td>
 +
</tr>
 +
</table>
  
För funktionen <math> \; f(x) \; = \; -5 + \displaystyle {1\over x} {\color{White} x} </math> blir derivatan:
 
  
:::::<math> \; f\,'(x) \; = \; 0 \,+\, \left(\displaystyle {- {1\over x^2}}\right) = - {1\over x^2} </math>
+
<div class="ovnE">
 +
'''Exempel 2'''
  
Här har vi använt resultatet från [[2.5_Deriveringsregler#Derivatan_av_en_potensfunktion|<strong><span style="color:blue">Derivatan av en potens, Exempel 2</span></strong>]], nämligen:
+
För funktionen <math> \displaystyle y = {1\over x} + \sqrt{x} \; </math> blir derivatan:
  
:::Derivatan av &nbsp; <math> y = \displaystyle {1 \over x} </math> &nbsp; är &nbsp; <math> y\,' = \displaystyle - \, {1 \over x^2} </math>
+
:::::<math> y\,' \, = - {1\over x^2} + {1 \over 2\,\sqrt{x}} </math>
</div> <!-- exempel8 -->
+
 
 +
Här har resultaten från Exempel 2 och 3 på [[2.5_Deriveringsregler#Derivatan_av_en_potens|<b><span style="color:blue">Regeln om derivatan av en potens</span></b>]] använts:
 +
 
 +
:::Derivatan av &nbsp; <math> f(x) = \displaystyle {1 \over x} </math> &nbsp; är &nbsp; <math> f\,'(x) = \displaystyle - \, {1 \over x^2} </math> &nbsp; och
 +
 
 +
:::Derivatan av &nbsp; <math> f(x) = \sqrt{x} </math> &nbsp; är <math> &nbsp; f\,'(x) = \displaystyle {1 \over 2\, \sqrt{x}} </math>.
 +
</div>
  
  
 
== <b><span style="color:#931136">Produkt och kvot av funktioner</span></b> ==
 
== <b><span style="color:#931136">Produkt och kvot av funktioner</span></b> ==
 
<div class="tolv"> <!-- tolv7 -->
 
<div class="tolv"> <!-- tolv7 -->
Regeln om [[2.5_Deriveringsregler#Derivatan_av_en_summa_av_funktioner|<strong><span style="color:blue">Derivatan av en summa av funktioner</span></strong>]] säger: En summa av funktioner kan deriveras termvis.  
+
Regeln ovan tillåter att derivera en summa av funktioner termvis.  
  
Av detta får man inte dra slutsatsen att samma sak gäller varken för en produkt eller en kvot av funktioner:
+
Av detta får inte dras slutsatsen att samma sak kan göras i en produkt eller i en kvot av funktioner:
 +
</div> <!-- tolv7 -->
  
  
'''1)''' &nbsp; En <strong><span style="color:red">produkt</span></strong> av funktioner kan <strong><span style="color:red">inte</span></strong> deriveras faktorvis.
+
<table>
</div> <!-- tolv7 -->
+
<tr>
<div class="exempel"> <!-- exempel9 -->
+
  <td><div class="border-divblue">
:'''Exempel:'''
+
<b>En <span style="color:red">produkt</span> av funktioner kan <span style="color:red">inte</span> deriveras faktorvis:</b>
  
:::<math> y = x \cdot \sqrt x </math>
+
:::Om <math> \;\; y     = f(x) \cdot g(x)\, </math>
  
:::<math> y\,' \neq 1 \cdot {1 \over 2\, \sqrt{x}} </math>
+
:::<math> \;\; y\,' \neq f\,'(x) \cdot g\,'(x) </math>
  
:'''Rätt:'''
+
</div>
 +
 
 +
 
 +
<div class="ovnE">
 +
'''Exempel'''
 +
 
 +
::<math> y = x \cdot \sqrt x </math>
 +
 
 +
::<math> y\,' \neq 1 \cdot {1 \over 2\, \sqrt{x}} \,=\, {1 \over 2\, \sqrt{x}} </math>
 +
 
 +
'''Rätt:'''
 
 
 
 
:::<math> y \,=\, x \cdot \sqrt{x} \,=\, x^1 \cdot x\,^{1 \over 2} \,=\, x\,^{1 + {1 \over 2}} \,=\, x\,^{3 \over 2} </math>  
+
::<math> y \,=\, x \cdot \sqrt{x} \,=\, x^1 \cdot x\,^{1 \over 2} \,=\, x\,^{1 + {1 \over 2}} \,=\, x\,^{3 \over 2} </math>  
  
:::<math> y\,' \,=\, {3 \over 2}\cdot x\,^{{3 \over 2}-1} \,=\, {3 \over 2}\cdot x\,^{1 \over 2} \,=\, {3 \over 2}\cdot \sqrt x </math>
+
::<math> y\,' \,=\, {3 \over 2}\cdot x\,^{{3 \over 2}-1} \,=\, {3 \over 2}\cdot x\,^{1 \over 2} \,=\, {3 \over 2}\cdot \sqrt x </math>
</div> <!-- exempel9 -->
+
</div>
  
  
<div class="tolv"> <!-- tolv8 -->
 
'''2)''' &nbsp; Inte heller en <strong><span style="color:red">kvot</span></strong> av funktioner kan deriveras täljaren för och nämnaren för sig.
 
</div> <!-- tolv8 -->
 
<div class="exempel"> <!-- exempel10 -->
 
:'''Exempel:'''
 
  
:::<math> y \,=\, \displaystyle {1 \over x} </math>
+
</td>
 +
  <td><math> \qquad\qquad </math></td>
 +
  <td><div class="border-divblue">
 +
<b><span style="color:red">Inte heller</span> i en <span style="color:red">kvot</span> av funktioner kan täljaren<br>deriveras för sig och nämnaren för sig:</b>
  
:::<math> y\,' \,\neq\, {0 \over 1} \,=\, 0 </math>
+
:Om <math> \displaystyle \;\; y    =  \frac{f(x)}{g(x)} \quad </math> då <math> \quad \displaystyle \;\; y\,' \neq \frac{f\,'(x)}{g\,'(x)} </math>
  
:'''Rätt:'''
+
</div>
  
:::<math> y\,' \,=\, \displaystyle - \, {1 \over x^2} </math>
+
 
</div> <!-- exempel10 -->
+
<div class="ovnE">
 +
'''Exempel'''
 +
 
 +
::<math> y \,=\, \displaystyle {x^2+1 \over x} </math>
 +
 
 +
::<math> y\,' \,\neq\, {2\,x+ 0 \over 1} \,=\, {2\,x\over 1} \,=\, 2\,x </math>
 +
 
 +
'''Rätt:'''
 +
 
 +
::<math> y = {x^2+1 \over x} = {x^2 \over x} + {1 \over x} = x + {1 \over x}  = x + x^{-1} </math>
 +
 
 +
::<math> y\,' = 1 + (-1)\cdot x^{-1-1} = 1- x^{-2} = 1- {1 \over x^2} </math>
 +
</div></td>
 +
</tr>
 +
</table>
  
  
 
<div class="tolv"> <!-- tolv6 -->
 
<div class="tolv"> <!-- tolv6 -->
Det finns specifika regler för derivatan av en produkt resp. kvot av funktioner, den s.k. <strong><span style="color:red">produkt-</span></strong> resp. <strong><span style="color:red">kvotregeln</span></strong>. Båda behandlas i kursen Matematik 4 enligt Skolverkets kursplan.
+
Deriveringsregler för produkt och kvot av funktioner (<b><span style="color:red">Produkt-</span></b> och <b><span style="color:red">Kvotregeln</span></b>) behandlas först i kursen Matematik 4.
 
</div> <!-- tolv6 -->
 
</div> <!-- tolv6 -->
  
Rad 384: Rad 415:
  
 
<div class="tolv"> <!-- tolv7 -->
 
<div class="tolv"> <!-- tolv7 -->
Vi sammanfattar våra resultat i följande tabell där <math> c,\,a,\,k,\,m,\,n </math> är konstanter medan <math> x\, </math> och <math> y\, </math> är variabler:
+
Vi sammanfattar våra resultat i följande tabell där <math> c,\,a,\,k,\,m,\,n </math> är konstanter medan <math> \, x\, </math> och <math> \, y\, = \, f(x) </math> är variabler:
  
:::::{| class="wikitable"
+
<div class="border-divblue">
 +
{| class="wikitable"
 
|-
 
|-
 
! <math> y\, </math> || <math> y\,' </math>  
 
! <math> y\, </math> || <math> y\,' </math>  
Rad 409: Rad 441:
 
|-
 
|-
 
| align=center| <math> \sqrt{x} </math> ||align=center| <math> \displaystyle {1 \over 2\, \sqrt{x}} </math>  
 
| align=center| <math> \sqrt{x} </math> ||align=center| <math> \displaystyle {1 \over 2\, \sqrt{x}} </math>  
|-
 
| align=center| <math> f(x) + g(x)\, </math> ||align=center| <math> f\,'(x) + g\,'(x) </math>
 
 
|-
 
|-
 
| align=center| <math> a\cdot f(x) </math> ||align=center| <math> a\cdot f\,'(x) </math>  
 
| align=center| <math> a\cdot f(x) </math> ||align=center| <math> a\cdot f\,'(x) </math>  
 +
|-
 +
| align=center| <math> f(x) + g(x)\, </math> ||align=center| <math> f\,'(x) + g\,'(x) </math>
 
|}
 
|}
 +
</div>
  
 
De två sista raderna i tabellen är snarare generella satser än deriveringsregler. De gäller för alla funktioner <math> f(x)\, </math> och <math> g(x)\, </math>. Av praktiska skäl tar vi upp dem i samma tabell som deriveringsreglerna.  
 
De två sista raderna i tabellen är snarare generella satser än deriveringsregler. De gäller för alla funktioner <math> f(x)\, </math> och <math> g(x)\, </math>. Av praktiska skäl tar vi upp dem i samma tabell som deriveringsreglerna.  
  
Vi kommer att komplettera tabellen ovan så fort vi lärt oss fler deriveringsregler om [[2.6 Derivatan av exponentialfunktioner|<strong><span style="color:blue">Derivatan av exponentialfunktioner</span></strong>]].
+
Vi kommer att komplettera tabellen ovan så fort vi lärt oss fler deriveringsregler om [[2.6 Derivatan av exponentialfunktioner|<b><span style="color:blue">Derivatan av exponentialfunktioner</span></b>]].
 
</div> <!-- tolv7 -->
 
</div> <!-- tolv7 -->
  
Rad 438: Rad 471:
  
  
[[Matte:Copyrights|Copyright]] © 2011-2015 Math Online Sweden AB. All Rights Reserved.
+
[[Matte:Copyrights|Copyright]] © 2020 [https://www.techpages.se <b><span style="color:blue">TechPages AB</span></b>]. All Rights Reserved.

Nuvarande version från 2 maj 2020 kl. 21.21

        <<  Förra avsnitt          Genomgång          Övningar          Fördjupning          Nästa avsnitt  >>      


Deriveringsreglerna är till för att kunna derivera utan att varje gång behöva använda derivatans definition.

Här sammanställs själva reglerna för de viktigaste typerna av funktioner. Deras bevis hittar man i fliken Fördjupning.

Derivatan av en konstant


Regel:    Derivatan av en konstant är 0.

               Om \( \;\; f(x) \; = \: c \quad {\rm där} \quad c = {\rm const.} \)

               då \( \;\; f\,'(x) \; = \: 0 \).

Bevis:    Se Fördjupning: Derivatan av en konstant.


\( \qquad \)

Exempel

För funktionen \( \;\, f(x) \; = \: -5 \; \) blir derivatan:

\[ \;\, f\,'(x) \; = \: 0 \]

Derivatan av en linjär funktion


Regel:    Derivatan av en linjär funktion är konstant.

               Om \( \;\; f(x) \; = \; k\cdot x \, + \, m \quad {\rm där} \quad k,\,m = {\rm const. } \)

               då \( \;\; f\,'(x) \; = \; k \)

Bevis:    Se Fördjupning: Derivatan av en linjär funktion.

\( \qquad \)

Exempel

För funktionen \( \;\, f(x) \; = \; -8\,x + 9 \; \) blir derivatan:

\[ \;\, f\,'(x) \; = \; -8 \]

Regel: En summa kan man derivera termvis, se längre fram.


Derivatan av en kvadratisk funktion


Regel:

Derivatan av en kvadratisk funktion är en linjär funktion:

Om \( \;\; f(x) \; = \; a\,x^2 \, + \, b\,x \, + \, c \quad {\rm där} \quad a,\,b,\,c = {\rm const. } \)

då \( \;\; f\,'(x) \; = \; 2\,a\,x \, + \, b \)

Bevis:    Se Fördjupning: Derivatan av en kvadratisk funktion.



\( \qquad \)

Exempel 1

För funktionen \( \;\, f(x) \; = \; 5\,x^2 - 3\,x + 6 \; \) blir derivatan:

\[ \;\, f\,'(x) \; = \; 10\,x - 3 \]

Exempel 2

För funktionen   \( f(x) \; = \; -25\,x^2 + 16\,x - 90 \; \) blir derivatan:

\[ f\,'(x) \; = \; 2\cdot (-25)\,x + 16 \; = \; - 50\,x + 16 \]

Derivatan av en potens


Regeln om derivatan av en potens:

Om \( \;\; f(x) \; = \; x\,^n \quad {\rm där} \quad n = {\rm const.} \)

då \( \;\; f\,'(x) \; = \; n\cdot x\,^{n-1} \)

\( \qquad \)

Exempel 1     \( n \,=\, \) positivt heltal:

För funktionen \( f(x) = x^5 \; \) blir derivatan:

\[ f\,'(x) = 5\,x^4 \]


Denna regel är den viktigaste formeln för derivering av elementära funktioner. Alla deriveringsregler vi ställt upp hittills är specialfall av denna regel.

Regeln gäller för ALLA exponenter \( {\color{Red} n} \), dvs inte bara för positiva (ex. 1) utan även för negativa heltalsexponenter (ex. 2) och t.o.m. för bråktal i exponenten (ex. 3).


Exempel 2     \( n \,=\, \) negativt heltal:

Derivera funktionen \( f(x) = \displaystyle {1 \over x} \) med hjälp av regeln om derivatan av en potens.

Innan vi kan tillämpa denna regel måste vi omvandla \( \displaystyle {1 \over x} \) till en potens med hjälp av Potenslagarna:

\( \qquad \displaystyle f(x) = \boxed{\frac{1}{x}} = x^{-1} \; \)              , se Lagen om negativ exponent.

Därmed är \( \,n = -1 \) och vi kan sätta in \( \, n = -1 \) i regeln om derivatan av en potens och får:

\( \qquad \displaystyle f\,'(x) = (-1)\cdot x^{-1-1} = (-1)\cdot x^{-2} = \boxed{\,- \, {1 \over x^2}\,} \)


Även i den sista likheten i raden ovan har Lagen om negativ exponent använts.


Exempel 3     \( n \,=\, \) bråktal:

Derivera funktionen \( f(x) = \sqrt{x} \) med hjälp av regeln om derivatan av en potens.

Innan vi kan tillämpa denna regel måste vi omvandla \( \sqrt{x} \) till en potens:

\( \qquad \displaystyle f(x) = \boxed{\sqrt{x}} = x\,^{1 \over 2} \; \)              , se Lagen om kvadratroten.

Därmed är \( n = {1 \over 2} \) och vi kan sätta in \( n = {1 \over 2} \) i regeln om derivatan av en potens och får:

\( \qquad \displaystyle f\,'(x) = {1 \over 2}\cdot x\,^{{1 \over 2}-1} = {1 \over 2}\cdot x\,^{-{1 \over 2}} = {1 \over 2}\cdot {1\over x\,^{1 \over 2}} = {1 \over 2}\cdot {1\over \sqrt{x}} = \boxed{\,{1 \over 2\, \sqrt{x}}\,} \)


Även i den näst sista likheten i raden ovan har Lagen om kvadratroten använts.


Derivatan av en funktion med en konstant faktor


Regel:

En konstant faktor förblir oförändrad vid derivering:

Om \( y = a\cdot f(x) \quad {\rm och} \quad a = {\rm const.} \)
då \( y\,' = a\cdot f\,'(x) \)


\( \qquad \)

Exempel

För funktionen \( y \,\, = \,\, 6\cdot \sqrt{x} \; \) blir derivatan:

\[ y\,' \, = \,\, 6\cdot (\sqrt{x})\,' \,= \, 6\cdot {1 \over 2\,\sqrt{x}} \,= \, {6 \over 2\,\sqrt{x}} \,=\, {3 \over \sqrt{x}} \]

Här har resultatet från Exempel 3 på Derivatan av en potens använts:

Derivatan av   \( f(x) = \sqrt{x} \)   är \(   f\,'(x) = \displaystyle {1 \over 2\, \sqrt{x}} \)


Tillämpning av regeln ovan på en potensfunktion:

Om \( \;\; y \; = \; a\,x\,^n \quad {\rm där} \quad n,\,a = {\rm const. } \)
då \( \;\; y\,' \; = \; n\cdot a\,x\,^{n-1} \)
\( \qquad \)

Exempel

För funktionen \( y = 12\,x^4 \; \) blir derivatan:

\[ y\,' = 4\cdot 12\,x^3 = 48\,x^3 \]

OBS!   Konstanten \( {\color{Red} a} \) tas oförändrad över till derivatan.

Regeln om att derivatan av en konstant är \( \, 0\, \) får ingen tillämpning här, därför att konstanten \( a\, \) inte är en additiv term här utan bunden till produkten \( a \cdot x\,^n \) som en faktor framför potensen och därför inte kan separeras från den:


Konstant faktor vs. additiv konstant

I funktionen     \( y \,=\, 6 \cdot \sqrt{x} \)   är   \( \, 6 \)   en konstant faktor i funktionsuttrycket.

Derivatan blir   \( y' = 6\cdot \displaystyle {1 \over 2\,\sqrt{x}} = {6 \over 2\,\sqrt{x}} = {3 \over \sqrt{x}} \)   enligt regeln ovan: "En konstant faktor förblir oförändrad vid derivering".

I funktionen     \( y \,=\, 6 \,+\, \sqrt{x} \)   är   \( \, 6 \) en additiv konstant i funktionsuttrycket.

Derivatan blir   \( y' = 0 \,+\, \displaystyle {1 \over 2\,\sqrt{x}} = {1 \over 2\,\sqrt{x}} \)   enligt regeln om att derivatan av en konstant är \( \, 0\, \).

Att derivatan av en konstant är \( 0\, \) innebär inte att derivatan av   \( a\cdot f(x) \)   blir   \( 0\cdot f\,'(x) \)   och därmed \( 0\, \). Det finns ingen regel som säger att en produkt av funktioner kan deriveras faktorvis, se Produkt och kvot av funktioner.

Regeln om derivatan av en konstant innebär: Derivatan av en "ensam" konstant är \( 0\, \). Förekommer konstanten däremot additivt i ett uttryck måste regeln preciseras:


Regel:

Derivatan av en additiv konstant är \( 0\, \).

Om \( \; y \; = \; c + f(x)\, \quad {\rm där} \quad c = {\rm const.} \)

då \( \; y' \; = \; 0 \,+\, f\,'(x) = f\,'(x) \).


\( \qquad \)

Exempel

För funktionen \( \; f(x) \; = \; -5 + \displaystyle {1\over x} \; \) blir derivatan:

\[ \; f\,'(x) \; = \; 0 \,+\, \left(\displaystyle {- {1\over x^2}}\right) = - {1\over x^2} \]

Här har resultatet från Exempel 2 på Derivatan av en potens använts:

Derivatan av   \( y = \displaystyle {1 \over x} \)   är   \( y\,' = \displaystyle - \, {1 \over x^2} \)

I exemplet ovan användes redan följande regel:


Derivatan av en summa av funktioner


Regel:

En summa av funktioner kan deriveras termvis:

Om \( \;\; y = f(x) + g(x)\, \)
då \( \;\; y\,' = f\,'(x) + g\,'(x) \)


\( \qquad \)

Exempel 1

För polynomfunktionen

\( \quad f(x) = -3\,x^4\,+\,9\,x^3\,-\,8\,x^2\,+\,17\,x\,-\,12 \; \) blir derivatan:

\( \quad f\,'(x) \, = -12\,x^3 + 27\,x^2 - 16\,x + 17 \)

Se även Derivatan av ett polynom.


Exempel 2

För funktionen \( \displaystyle y = {1\over x} + \sqrt{x} \; \) blir derivatan:

\[ y\,' \, = - {1\over x^2} + {1 \over 2\,\sqrt{x}} \]

Här har resultaten från Exempel 2 och 3 på Regeln om derivatan av en potens använts:

Derivatan av   \( f(x) = \displaystyle {1 \over x} \)   är   \( f\,'(x) = \displaystyle - \, {1 \over x^2} \)   och
Derivatan av   \( f(x) = \sqrt{x} \)   är \(   f\,'(x) = \displaystyle {1 \over 2\, \sqrt{x}} \).


Produkt och kvot av funktioner

Regeln ovan tillåter att derivera en summa av funktioner termvis.

Av detta får inte dras slutsatsen att samma sak kan göras i en produkt eller i en kvot av funktioner:


En produkt av funktioner kan inte deriveras faktorvis:

Om \( \;\; y = f(x) \cdot g(x)\, \)
då \( \;\; y\,' \neq f\,'(x) \cdot g\,'(x) \)


Exempel

\[ y = x \cdot \sqrt x \]
\[ y\,' \neq 1 \cdot {1 \over 2\, \sqrt{x}} \,=\, {1 \over 2\, \sqrt{x}} \]

Rätt:

\[ y \,=\, x \cdot \sqrt{x} \,=\, x^1 \cdot x\,^{1 \over 2} \,=\, x\,^{1 + {1 \over 2}} \,=\, x\,^{3 \over 2} \]
\[ y\,' \,=\, {3 \over 2}\cdot x\,^{{3 \over 2}-1} \,=\, {3 \over 2}\cdot x\,^{1 \over 2} \,=\, {3 \over 2}\cdot \sqrt x \]


\( \qquad\qquad \)

Inte heller i en kvot av funktioner kan täljaren
deriveras för sig och nämnaren för sig:

Om \( \displaystyle \;\; y = \frac{f(x)}{g(x)} \quad \) då \( \quad \displaystyle \;\; y\,' \neq \frac{f\,'(x)}{g\,'(x)} \)


Exempel

\[ y \,=\, \displaystyle {x^2+1 \over x} \]
\[ y\,' \,\neq\, {2\,x+ 0 \over 1} \,=\, {2\,x\over 1} \,=\, 2\,x \]

Rätt:

\[ y = {x^2+1 \over x} = {x^2 \over x} + {1 \over x} = x + {1 \over x} = x + x^{-1} \]
\[ y\,' = 1 + (-1)\cdot x^{-1-1} = 1- x^{-2} = 1- {1 \over x^2} \]


Deriveringsregler för produkt och kvot av funktioner (Produkt- och Kvotregeln) behandlas först i kursen Matematik 4.


Tabell över deriveringsregler

Vi sammanfattar våra resultat i följande tabell där \( c,\,a,\,k,\,m,\,n \) är konstanter medan \( \, x\, \) och \( \, y\, = \, f(x) \) är variabler:

\( y\, \) \( y\,' \)
\( c\, \) \( 0\, \)
\( x\, \) \( 1\, \)
\( a\; x \) \( a\, \)
\( k\; x \, + \, m \) \( k\, \)
\( x^2\, \) \( 2\,x \)
\( a\,x^2 \) \( 2\,a\,x \)
\( x^n\, \) \( n\cdot x\,^{n-1} \)
\( a\,x\,^n \) \( a\cdot n\cdot x\,^{n-1} \)
\( \displaystyle {1 \over x} \) \( \displaystyle - {1 \over x^2} \)
\( \sqrt{x} \) \( \displaystyle {1 \over 2\, \sqrt{x}} \)
\( a\cdot f(x) \) \( a\cdot f\,'(x) \)
\( f(x) + g(x)\, \) \( f\,'(x) + g\,'(x) \)

De två sista raderna i tabellen är snarare generella satser än deriveringsregler. De gäller för alla funktioner \( f(x)\, \) och \( g(x)\, \). Av praktiska skäl tar vi upp dem i samma tabell som deriveringsreglerna.

Vi kommer att komplettera tabellen ovan så fort vi lärt oss fler deriveringsregler om Derivatan av exponentialfunktioner.


Internetlänkar

http://www.youtube.com/watch?v=vzYS8OEnngw

https://www.youtube.com/watch?v=ekESj2A5IiY

https://www.youtube.com/watch?v=hZXusMjayZk

http://www.youtube.com/watch?v=hYKiTPB7jnQ&feature=related





Copyright © 2020 TechPages AB. All Rights Reserved.