Skillnad mellan versioner av "2.6 Övningar till Derivatan av exponentialfunktioner"
Taifun (Diskussion | bidrag) m |
Taifun (Diskussion | bidrag) m (→Övning 1) |
||
Rad 27: | Rad 27: | ||
g) <math> y = {e\,^x + e\,^{-x} \over 2} </math> | g) <math> y = {e\,^x + e\,^{-x} \over 2} </math> | ||
− | </div> | + | </div> {{#NAVCONTENT:Svar 1a|2.5 Svar 1a|Svar 1b|2.5 Svar 1b|Svar 1c|2.5 Svar 1c|Svar 1d|2.5 Svar 1d|Svar 1e|2.5 Svar 1e|Svar 1f|2.5 Svar 1f|Svar 1g|2.5 Svar 1g|Lösning 1g|2.5 Lösning 1g}} |
Alternativt: | Alternativt: | ||
:<small><small>[[2.5 Svar 1a|Svar 1a]] | [[2.5 Svar 1b|Svar 1b]] | [[2.5 Svar 1c|Svar 1c]] | [[2.5 Svar 1d|Svar 1d]] | [[2.5 Svar 1e|Svar 1e]] | [[2.5 Svar 1f|Svar 1f]] | [[2.5 Svar 1g|Svar 1g]] | [[2.5 Lösning 1g|Lösning 1g]]</small></small> | :<small><small>[[2.5 Svar 1a|Svar 1a]] | [[2.5 Svar 1b|Svar 1b]] | [[2.5 Svar 1c|Svar 1c]] | [[2.5 Svar 1d|Svar 1d]] | [[2.5 Svar 1e|Svar 1e]] | [[2.5 Svar 1f|Svar 1f]] | [[2.5 Svar 1g|Svar 1g]] | [[2.5 Lösning 1g|Lösning 1g]]</small></small> | ||
− | |||
== Övning 2 == | == Övning 2 == |
Versionen från 16 maj 2011 kl. 08.06
Teori | Övningar |
G-övningar: 1-6
Övning 1
Ställ upp derivatan av följande funktioner:
a) \( y = e\,^x + 8 \)
b) \( y = e\,^{2\,x} \)
c) \( y = 3\cdot e\,^x \)
d) \( y = 4\cdot e\,^{5\,x} \)
e) \( y = 16\cdot e\,^{-3\,x} \)
f) \( y = - x + e\,^{-0,5\,x} \)
g) \( y = {e\,^x + e\,^{-x} \over 2} \)
Alternativt:
Övning 2
Bestäm ekvationen för tangenten till kurvan \( f(x) = e\,^x \) i punkten \( (0, 1)\, \).
För att få en illustrativ bild av lösningen rekommenderas att du ritar kurvan och tangenten i samma koordinatsystem.
Övning 3
Ställ upp derivatan av följande funktioner. Avrunda konstanterna i svaren till 4 decimaler.
a) \( y = 10\,^x \)
b) \( y = 2\,^x - 6 \)
c) \( y = 4\cdot 5\,^x \)
d) \( y = -7\cdot 10\,^{-x} \)
e) \( y = 9\cdot 3\,^{-4\,x} \)
f) \( y = {3\,^x + 3\,^{-x} \over 3} \)
Övning 4
Bestäm ekvationen för tangenten till kurvan \( f(x) = 2\,^x \) i punkten (med x-koordinaten) \( x = 0\, \).
För att få en illustrativ bild av lösningen rekommenderas att du ritar kurvan och tangenten i samma koordinatsystem.
Övning 5
I det introducerande avsnittet Vad är derivatan? sysslade vi med följande aktivitet:
Lisa tävlar i simhopp. Hennes hopp från 10-meterstorn följer en bana som beskrivs av funktionen
- \[ y = f(x) = - 9\,x^2 + 6\,x + 10\, \]
där \( y\, \) är Lisas höjd över vattnet (i meter) och \( x\, \) är tiden efter hon lämnat brädan (i sekunder).
Hon slår i vattnet efter 1,45 sekunder.
a) Ställ upp med deriveringsreglerna derivatan av \( f(x)\, \).
b) Beräkna med hjälp av derivatan från a) med vilken hastighet Lisa slår i vattnet?
Övning 6
Följande parabel är given:
- \[ y = x^2 + 5\,x - 8 \]
a) Vilken lutning har parabeln i punkten \( x = 1\, \)?
b) Ange ekvationen för tangenten till parabeln i denna punkt.
c) Rita grafen till både parabeln och tangenten i samma koordinatsystem.
VG-övningar: 7-8
Övning 7
Ställ upp ekvationen för tangenten till kurvan
- \[ y = x^2 + 5 x - 1\, \]
i punkten \( x = -1\, \) .
Övning 8
I en bakteriekultur växer antalet bakterier y enligt följande modell
- \[ y = 2\,x^4 + 2\,500 \]
där x är tiden i timmar.
Efter hur många timmar kommer bakteriernas tillväxthastighet att vara \( 1\,000 \) bakterier per timme?
MVG-övningar: 9-10
Övning 9
För vilka värden på \( a\, \) och \( b\, \) går kurvan
- \[ y = a\,x^2 + b\,x \]
genom punkten \( (1, -1)\, \) och har där lutningen \( 4\, \) ?
Övning 10
Kurvan
- \[ y = 2\,x^2 - 3\,x - 4 \]
har en tangent som är parallell till den räta linjen \( y = x - 4\, \).
a) Rita kurvan.
b) Bestäm tangeringspunktens x- och y-koordinat.
c) Ställ upp ekvationen för tangenten till kurvan i tangeringspunkten.
d) Rita tangentens graf i samma koordinatsystem som kurvan.