Skillnad mellan versioner av "1.2 Lösning 12b"
Från Mathonline
		
		
		
Taifun  (Diskussion | bidrag) m  | 
				Taifun  (Diskussion | bidrag)  m  | 
				||
| (En mellanliggande version av samma användare visas inte) | |||
| Rad 3: | Rad 3: | ||
:::<math> 8\,x^2 + 7\,x - 1 = k \cdot x^2 + \ldots </math>  | :::<math> 8\,x^2 + 7\,x - 1 = k \cdot x^2 + \ldots </math>  | ||
| − | Jämförelse av koefficienten till <math> x^2 </math> leder till:  | + | Jämförelse av koefficienten till <math> x^2 </math> leder till<span style="color:black">:</span>  | 
| − | :::  | + | ::::::<math> k = 8\, </math>  | 
| − | Insatt ovan ger:  | + | Insatt ovan ger<span style="color:black">:</span>  | 
<math> P(x) = \;\,8\,x^2 + 7\,x - 1 = 8 \cdot (x - {1\over 8}) \cdot (x + 1)  </math>  | <math> P(x) = \;\,8\,x^2 + 7\,x - 1 = 8 \cdot (x - {1\over 8}) \cdot (x + 1)  </math>  | ||
| − | Därmed kan vi ange polynomet <math>P(x)\,</math>:s faktorisering till:  | + | Därmed kan vi ange polynomet <math>P(x)\,</math>:s faktorisering till<span style="color:black">:</span>  | 
<math> P(x) = \;\,8\,x^2 + 7\,x - 1 = (8\,x - 1) \cdot (x + 1)  </math>  | <math> P(x) = \;\,8\,x^2 + 7\,x - 1 = (8\,x - 1) \cdot (x + 1)  </math>  | ||
| − | Dvs:  | + | Dvs<span style="color:black">:</span>  | 
<math> a\, = 8 </math>  | <math> a\, = 8 </math>  | ||
Nuvarande version från 31 augusti 2016 kl. 20.25
\( P(x) = \;\,8\,x^2 + 7\,x - 1 = k \cdot (x - {1\over 8}) \cdot (x + 1) \)
- \[ 8\,x^2 + 7\,x - 1 = k \cdot x^2 + \ldots \]
 
Jämförelse av koefficienten till \( x^2 \) leder till:
- \[ k = 8\, \]
 
Insatt ovan ger:
\( P(x) = \;\,8\,x^2 + 7\,x - 1 = 8 \cdot (x - {1\over 8}) \cdot (x + 1) \)
Därmed kan vi ange polynomet \(P(x)\,\):s faktorisering till:
\( P(x) = \;\,8\,x^2 + 7\,x - 1 = (8\,x - 1) \cdot (x + 1) \)
Dvs:
\( a\, = 8 \)
\( b\, = -1 \)
\( c\, = 1 \)
\( d\, = 1 \)