Skillnad mellan versioner av "1.6a Svar 9c"
Från Mathonline
		
		
		
Taifun  (Diskussion | bidrag) m  | 
				Taifun  (Diskussion | bidrag)  m  | 
				||
| (2 mellanliggande versioner av samma användare visas inte) | |||
| Rad 1: | Rad 1: | ||
| − | |||
Ekvationens vänsterled kan betraktas som summan av avstånden från <math> x \, </math> till <math> 4 \, </math> och från <math> x \, </math> till <math> -1\, </math>.  | Ekvationens vänsterled kan betraktas som summan av avstånden från <math> x \, </math> till <math> 4 \, </math> och från <math> x \, </math> till <math> -1\, </math>.  | ||
| − | Denna summa   | + | Denna summa kan aldrig bli mindre än avståndet från <math> 4 \, </math> till <math> -1 \, </math> som är lika med <math> 5 \, </math>.  | 
| − | Därför kan summan inte för något <math> x \, </math> vara lika med <math> 3 \, </math>.  | + | Därför kan summan inte för något <math> x \, </math> vara mindre än <math> 5 \, </math> och därmed inte lika med <math> 3 \, </math>.  | 
| − | + | ||
Nuvarande version från 6 september 2014 kl. 10.12
Ekvationens vänsterled kan betraktas som summan av avstånden från \( x \, \) till \( 4 \, \) och från \( x \, \) till \( -1\, \).
Denna summa kan aldrig bli mindre än avståndet från \( 4 \, \) till \( -1 \, \) som är lika med \( 5 \, \).
Därför kan summan inte för något \( x \, \) vara mindre än \( 5 \, \) och därmed inte lika med \( 3 \, \).