Skillnad mellan versioner av "Huvudsida"

Från Mathonline
Hoppa till: navigering, sök
m
m
 
(148 mellanliggande versioner av samma användare visas inte)
Rad 1: Rad 1:
 
__NOTOC__
 
__NOTOC__
<!-- == Välkommen till&nbsp; <Big><b><span style="color:black">Math Online</span></b></Big> <math>-</math> ett webbaserat digitalt läromedel för matematik == -->
 
 
 
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%"
 
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%"
 
| style="border-bottom:1px solid #797979" width="5px" | &nbsp;
 
| style="border-bottom:1px solid #797979" width="5px" | &nbsp;
{{Selected tab|[[Huvudsida|Start Matte 3c]]}}
+
{{Not selected tab|[[Matte 3c Innehållsförteckning|Innehållsförteckning]]}}
{{Not selected tab|[[Matte 3c Planering|Planering Matte 3c]]}}
+
<!-- {{Not selected tab|[[Matte 3c Planering|Planering Matte 3c]]}} -->
{{Not selected tab|[[Matte 3c Innehållsförteckning|Innehållsfört. / Kursbeskrivn.]]}}
+
{{Not selected tab|[[Media: Centralt_innehall_Ma3c.pdf|Centralt innehåll]]}}
{{Not selected tab|[[Media: Centralt_innehall_Ma3c.pdf|Centralt innehåll (Skolverket)]]}}
+
{{Not selected tab|[[Media: Kunskapskrav_Ma3c.pdf|Kunskapskrav]]}}
{{Not selected tab|[[Media: Kunskapskrav_Ma3c.pdf|Kunskapskrav (Betygskriterier)]]}}
+
{{Not selected tab|[[Media: Formelsamling NP Ma3.pdf|Formelsamling Matte 3]]}}
 +
{{Not selected tab|[[1.3 Rationella uttryck|<b><span style="color:red">Aktuell lektion</span></b>]]}}
 
| style="border-bottom:1px solid #797979"  width="100%"| &nbsp;
 
| style="border-bottom:1px solid #797979"  width="100%"| &nbsp;
 
|}
 
|}
  
 +
 +
<big><big><big>Välkommen till Matte 3c i&nbsp; [http://www.mathonline.se <b><span style="color:blue">Math Online</span></b>] <math>-</math> ett webbaserat digitalt läromedel för matematik</big></big></big>
 
<table>
 
<table>
 
<tr>
 
<tr>
   <td>[[File: Bild till vad ar math online.jpg]]</td>
+
   <td>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;[[Image: Bild_till_vad_ar_mathonline_a.jpg]]
 
+
</td>
 
+
<td><math> \qquad\quad </math></td>
<td>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<div class="ovnE">{{#NAVCONTENT:Övning|1.2 Övning 3a}}</div> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <big>Exempel på en övning.</big>
+
<td>
  
  
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<div class="ovnC">{{#NAVCONTENT:Svar|1.2 Svar 3a}}</div> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <big>Här kan man kontrollera sitt svar.</big>
+
[[Image: Chebyshev_Polyn_2nd_60a.jpg]]
  
 
+
::<big><big>&nbsp;&nbsp;[[1.1_Fördjupning_till_Polynom#En_familj_av_h.C3.B6gre_grads_polynomfunktioner|Polynomfunktioner av grad <math> \, n = 0, 1, \ldots , 5</math>]]</big></big>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<div class="ovnA">{{#NAVCONTENT:Lösning|1.2 Lösning 3a}}</div> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <big>Övningens fullständiga lösning med alla mellansteg.</big>
+
</td>
 
+
  </td>
+
 
</tr>
 
</tr>
 
</table>
 
</table>
  
  
== Att komma igång med &nbsp;<Big><b>Matte 3c</b></Big>&nbsp; i Math Online ==
+
<div class="ovnE">
 +
<b>Matematik 3c </b> är en fortsättningskurs och förutsätter förkunskaper från kurser motsvarande Matematik 1c och 2c.
  
<big>
+
Det som står i fokus av denna kurs är begreppet derivata. För att förbereda eleven på begreppet derivata gås igenom en hel del algebra.
* I vänsterspalten ser du innehållet i kursen Matte 3c som du kan använda för att navigera genom materialet.
+
  
* Kursen är indelad i fem kapitel. Varje kapitel innehåller ett antal avsnitt och avslutas med ett diagnosprov samt fullständiga lösningar.
+
Även olika typer av funktioner som introducerades i kursen Matematik 2c, vidareutvecklas och fördjupas, inkl. naturliga logaritmer.
  
* Varje avsnitt börjar med en [[1.1 Polynom|<strong><span style="color:blue">Genomgång</span></strong>]] som behandlar grundbegrepp med hjälp av enkla lösta exempel och förklaringar för att förstå exemplen.
+
I kapitlet Användning av derivata lär vi oss att lösa praktiska problem med hjälp av derivata, speciellt extremvärdesproblem.
  
* Vissa avsnitt har repeterande, fördjupande eller repeterande underavsnitt. T.ex. är [[Potenser|<strong><span style="color:blue">Potenser</span></strong>]] ett fördjupande underavsnitt i avsnittet [[1.1 Polynom|<strong><span style="color:blue">Polynom</span></strong>]].
+
Kursen fortsätter med derivatans omvända operation, nämligen integration. Det avslutande kapitlet handlar om trigonometri –
  
* Till varje avsnitt finns det [[1.1 Övningar till Polynom|<strong><span style="color:blue">Övningar</span></strong>]] indelad i tre kategorier: E-, C- och A-nivå samt svar (facit) och fullständiga lösningar. Se exemplet ovan.
+
läran om beräkning av trianglar. För detaljerat upplägg se [[Matte 3c Innehållsförteckning|<b><span style="color:blue">innehållsförteckningen</span></b>]].
  
* När man är klar med ett kapitel är det dags för ett [[Diagnosprov 1 i Matte 3 kap 1 Algebra och funktioner|<strong><span style="color:blue">diagnosprov</span></strong>]] som ska förbereda på det riktiga provet.
+
Matematik 3c är obligatorisk för gymnasiets Naturvetenskapsprogram (NA) och Teknikprogram (TE) och kan ge meritpoäng även som
  
* Till varje diagnosprov finns [[Lösningar till diagnosprov 1 i Matte 3 kap 1 Algebra och funktioner|<strong><span style="color:blue">fullständiga lösningar</span></strong>]] som man kan använda för att själv (eller låta en kompis) rätta sitt diagnosprov.
+
frivillig kurs för gymnasiets andra program. Den passar också för vuxenutbildningen.
  
* Diagnosprovets resultat kan diskuteras med läraren för att få både [http://www.jisc.ac.uk/guides/feedback-and-feed-forward <strong><span style="color:blue">feedback</span></strong>] och [http://www.edweek.org/tsb/articles/2012/03/01/02formative.h05.html <strong><span style="color:blue">feed-forward</span></strong>] samt kunna vidareutveckla elevens mattekompetens.
+
Kursen följer [http://www.skolverket.se/laroplaner-amnen-och-kurser/gymnasieutbildning/gymnasieskola/mat?tos=gy&subjectCode=mat&lang=sv <b><span style="color:blue">Skolverkets ämnesplan GY 2011</span></b>].
  
* Alla avsnitt innehåller [[1.1_Polynom#Internetl.C3.A4nkar|<strong><span style="color:blue">Internetlänkar</span></strong>]] till kompletterande material, ofta små videos på YouTube, demos, animationer, små spel eller extraövningar.
+
Matematik 3c motsvarar i stora delar den kurs som i den gamla kursplanen hette Matematik C.
 +
</div>
  
* Man kan även söka efter ett matematiskt begrepp i sökfältet <b>Sök</b> i vänsterspalten för att få fram de sidor som innehåller sökordet.
 
</big>
 
  
 
+
== Att komma igång med Matte 3c-kursen ==
<div class="forsmak">
+
== <b><span style="color:#931136">Exempel och försmak på Math Online:s pedagogik</span></b> ==
+
  
 
<table>
 
<table>
 
<tr>
 
<tr>
   <td><big><big>1. Exempelorienterad undervisning:</big></big>
+
   <td><big>
 +
* &nbsp; Ovan på sidan hittar du flikar till kursens [[Matte 3c Planering|<b><span style="color:blue">planering</span></b>]] och [[Matte 3c Innehållsförteckning|<b><span style="color:blue">innehålls-</span></b>]]<br> &nbsp;&nbsp;[[Matte 3c Innehållsförteckning|<b><span style="color:blue">förteckning</span></b>]] som följer Skolverkets [[Media: Centralt_innehall_Ma3c.pdf|<b><span style="color:blue">centrala innehåll</span></b>]] (kursplan).
  
 +
* &nbsp; I vänsterspalten ser du länkar till kursens innehåll som du kan an-<br> &nbsp;&nbsp;vända för att navigera genom materialet.
  
 +
* &nbsp; Kursen är indelad i fem kapitel. Varje kapitel innehåller ett antal av-<br> &nbsp;&nbsp;snitt och avslutas med diagnosprov samt fullständiga lösningar.
  
 +
* &nbsp; Varje avsnitt börjar med en [[1.1 Polynom|<b><span style="color:blue">genomgång</span></b>]] som behandlar grundbe-<br> &nbsp;&nbsp;grepp med hjälp av enkla lösta exempel och förklaringar.
  
 +
* &nbsp; Vissa avsnitt har repeterande, fördjupande eller tillämpande under-<br> &nbsp;&nbsp;avsnitt. T.ex. är [[Potenser|<b><span style="color:blue">Potenser</span></b>]] ett repeterande underavsnitt i avsnittet<br> &nbsp;&nbsp;[[1.1 Polynom|<b><span style="color:blue">Polynom</span></b>]].
  
 +
* &nbsp; Till varje avsnitt finns det [[1.1 Övningar till Polynom|<strong><span style="color:blue">övningar</span></strong>]] indelad i tre kategorier: E-, C-<br> &nbsp;&nbsp;och A-nivå samt svar (facit) och fullständiga lösningar.&nbsp;&nbsp;Ex.<span style="color:black">:</span>&nbsp;&nbsp;<math> \to </math>
  
 +
* &nbsp; När man är klar med ett kapitel är det dags för [[Diagnosprov 1 i Matte 3 kap 1 Algebra och funktioner|<b><span style="color:blue">diagnosprov</span></b>]] som<br> &nbsp;&nbsp;ska förbereda på det riktiga provet.
  
 +
* &nbsp; Till varje diagnosprov finns [[Lösningar till diagnosprov 1 i Matte 3 kap 1 Algebra och funktioner|<b><span style="color:blue">fullständiga lösningar</span></b>]] som man kan<br> &nbsp;&nbsp;använda för att själv (eller låta en kompis) rätta sitt diagnosprov.
 +
</big>
 +
</td>
 +
<td>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</td>
 +
<td><math> \quad </math> <big><span style="color:blue">>></span> <math> \quad </math> <div class="ovnE">{{#NAVCONTENT:Exempel på en övning|1.2 Övning 3a}}</div></big>
  
  
<big><big>2. [http://90.224.99.82:8080/minidemo/index.php/Potenser#Varf.C3.B6r_.C3.A4r_.5C.28_.5C.3B_5.5C.2C.5E0_.5C.2C_.3D_.5C.2C_1_.5C.3B_.5C.29.3F <span style="color:blue">Varför är <math> \; 5\,^0 \, = \, 1 </math>, medan <math> \, 5 \cdot 0 \, = \, 0 \; </math>?</span>]</big></big>
+
<math> \quad </math> <big><span style="color:blue">>></span> <math> \quad </math> <div class="ovnC">{{#NAVCONTENT:Exempel på övningens svar|1.2 Svar 3a}}</div></big>
  
  
<big><big>3. [http://90.224.99.82:8080/minidemo/index.php/Varf%C3%B6r_f%C3%A5r_man_inte_dividera_med_0_%3F <span style="color:blue">Varför får man inte dividera med <math> \, 0 \, </math>?</span>]</big></big>
+
<math> \quad </math> <big><span style="color:blue">>></span> <math> \quad </math> <div class="ovnA">{{#NAVCONTENT:Exempel på övningens fullständiga lösning|1.2 Lösning 3a}}</div></big>
 +
</td>
 +
</tr>
 +
</table>
 +
<big>
 +
* &nbsp; Diagnosprovens resultat kan diskuteras med din lärare för att få både [http://www.jisc.ac.uk/guides/feedback-and-feed-forward <b><span style="color:blue">feedback</span></b>] och [http://www.edweek.org/tsb/articles/2012/03/01/02formative.h05.html <b><span style="color:blue">feed-forward</span></b>] samt kunna vidareutveckla dina mattekunskaper.
  
 +
* &nbsp; Inför det nationella provet i Matte 3c kan man förbereda sig genom att träna på [[Gammalt nationellt prov 2 i Matte 3c|<b><span style="color:blue">gamla nationella prov</span></b>]] med fullständiga lösningar och [[Repetitionsuppgifter inför nationella provet i Matte 3c|<b><span style="color:blue">repetitionsuppgifter</span></b>]].
  
<big><big>4. [http://90.224.99.82:8080/minidemo/index.php/1.2_Räkneordning#Varf.C3.B6r_g.C3.A5r_multiplikation_f.C3.B6re_addition.3F <span style="color:blue">Varför går multiplikation före addition?</span>]</big></big>
+
* &nbsp; Alla avsnitt innehåller [[1.1_Polynom#Internetl.C3.A4nkar|<strong><span style="color:blue">Internetlänkar</span></strong>]] till kompletterande material, ofta små videos på YouTube, demos, animationer, små spel eller extraövningar.
  
 +
* &nbsp; Man kan även söka efter ett matematiskt begrepp i sökfältet <b>Sök</b> längst ner i vänsterspalten för att få fram de sidor som innehåller sökordet.
 +
</big>
  
<big><big>5. [http://90.224.99.82:8080/minidemo/index.php/Cirkel_eller_kvadrat%3F <span style="color:blue">En mattenöt:</span>]</big></big>
 
  
  </td>
 
  
  <td> <math> \quad </math> </td>
+
<div class="forsmak">
 +
== <b><span style="color:#931136">Exempel och försmak på Math Online:s pedagogik</span></b> ==
  
  <td>[http://90.224.99.82:8080/minidemo/index.php/Flaska_med_pant <span style="color:blue">Flaska med pant som exempel för ekvationslösning </span>] <math> \qquad </math> [http://90.224.99.82:8080/minidemo/index.php/Översättning_till_ekvation <span style="color:blue">Översättning till ekvation</span>] <math> \qquad </math> [http://90.224.99.82:8080/minidemo/index.php/Lösning_till_flaska_med_pant <span style="color:blue">Lösning</span>] <math> \qquad </math> [http://90.224.99.82:8080/minidemo/index.php/Svar_till_flaska_med_pant <span style="color:blue">Svar</span>]
+
<table>
 +
<tr>
 +
  <td><big><big>1. Exempelorienterad undervisning:</big></big>
  
[http://90.224.99.82:8080/minidemo/index.php/2.2_Genomsnittlig_f%C3%B6r%C3%A4ndringshastighet <span style="color:blue">Marginalskatt och oljetank som exempel för genomsnittlig förändringshastighet</span>]
 
  
[http://90.224.99.82:8080/minidemo/index.php/2.1_Introduktion_till_derivata <span style="color:blue">Simhopp från 10 meterstorn som exempel för begreppet derivata (Elevaktivitet)</span>]
 
  
[http://90.224.99.82:8080/minidemo/index.php/3.5_Extremvärdesproblem <span style="color:blue">Rektangel i parabel, glasskiva och konservburk som exempel för extremvärdesproblem</span>]
 
  
[http://90.224.99.82:8080/minidemo/index.php/1.5_Kontinuerliga_och_diskreta_funktioner#Exempel_3_Fibonaccis_problem <span style="color:blue">Fibonaccis problem (samt digital beräkning med Excel) som exempel för diskreta funktioner</span>]
 
  
  
Rad 99: Rad 112:
  
  
[http://90.224.99.82:8080/minidemo/index.php/Teoretisk_förklaring <span style="color:blue">Teoretisk förklaring</span>] <math> \qquad\quad\;\; </math> [http://90.224.99.82:8080/minidemo/index.php/Praktisk_förklaring <span style="color:blue">Praktisk förklaring</span>] <math> \qquad\quad\;\; </math> [http://90.224.99.82:8080/minidemo/index.php/Vad_h%C3%A4nder_om_man_%C3%A4nd%C3%A5_dividerar_med_0_%3F <span style="color:blue">Vad händer om man ändå gör det?</span>]
 
  
  
 +
<big><big>2. [[1.7_Potenser#Varf.C3.B6r_.C3.A4r_.5C.28_.5C.3B_5.5C.2C.5E0_.5C.2C_.3D_.5C.2C_1_.5C.3B_.5C.29.3F|<span style="color:blue">Varför är <math> \; 5\,^0 \, = \, 1 </math>, medan <math> \, 5 \cdot 0 \, = \, 0 \; </math>?</span>]]</big></big>
  
  
 +
<big><big>3. [[Varf%C3%B6r_f%C3%A5r_man_inte_dividera_med_0_%3F|<span style="color:blue">Varför får man inte dividera med <math> \, 0 \, </math>?</span>]]</big></big>
  
  
[http://90.224.99.82:8080/minidemo/index.php/Formulering_&_ledning_för_mattenöten <span style="color:blue">Formulering & ledning</span>] <math> \qquad </math> [http://90.224.99.82:8080/minidemo/index.php/Lösning_till_mattenöten <span style="color:blue">Lösning</span>] <math> \qquad </math> [http://90.224.99.82:8080/minidemo/index.php/Svar_till_mattenöten <span style="color:blue">Svar</span>]
+
<big><big>4. [http://52.210.62.116:1800/index.php/1.2_Räkneordning#Varf.C3.B6r_g.C3.A5r_multiplikation_f.C3.B6re_addition.3F <span style="color:blue">Varför går multiplikation före addition?</span>]</big></big>
  
</td>
 
  
</tr>
+
<big><big>5. [http://52.210.62.116:1800/index.php/En_matten%C3%B6t <span style="color:blue">En mattenöt:&nbsp; Cirkel eller kvadrat?</span>]</big></big>
</table>
+
</div>
+
  
 +
  </td>
  
== Att komma igång med&nbsp; <Big><b><span style="color:black">Math Online</span></b></Big> ==
+
  <td> <math> \quad </math> </td>
  
* I vänsterspalten ser du innehållet och strukturen på kursen Matematik 3c enligt [[Media: Centralt_innehall_Ma3c.pdf|<strong><span style="color:blue">Skolverkets kursplan (centralt innehåll)</span></strong>]]. För andra kurser gå till [http://www.mathonline.se/kurser/ <strong><span style="color:blue">kurser</span></strong>] och klicka sedan på resp. kursbild.  
+
  <td><span style="color:red"><b>Ekvationer:</b></span> <math> \qquad </math> [http://52.210.62.116:1800/index.php/Flaska_med_pant <span style="color:blue">Flaska med pant</span>] <math> \qquad </math> [http://52.210.62.116:1800/index.php/Att_ställa_upp_en_ekvation <span style="color:blue">Att ställa upp en ekvation</span>] <math> \qquad </math> [http://52.210.62.116:1800/index.php/Lösning_till_flaska_med_pant <span style="color:blue">Lösning</span>] <math> \qquad </math> [http://52.210.62.116:1800/index.php/Svar_till_flaska_med_pant <span style="color:blue">Svar</span>]
  
* Via länken [[Matte 3c Planering|<strong><span style="color:blue">Planering Matematik 3c</span></strong>]] i vänsterspalten kan du se planeringen för kursen Matematik 3c som genomfördes på Designgymnasiets Teknikprogram läsåret 2014-15.  
+
<span style="color:red"><b>Genomsnittlig förändringshastighet:</b></span> <math> \qquad </math> [http://52.210.62.116:1800/index.php/2.2_Genomsnittlig_f%C3%B6r%C3%A4ndringshastighet#Exempel_1_Marginalskatt <span style="color:blue">Marginalskatt</span>] <math> \qquad </math> [http://52.210.62.116:1800/index.php/2.2_Genomsnittlig_f%C3%B6r%C3%A4ndringshastighet#Exempel_3_Oljetank <span style="color:blue">Oljetank</span>]
  
* Länken [[Matte 3c Innehållsförteckning|<strong><span style="color:blue">Innehållsförteckning Matematik 3c</span></strong>]] visar kursens struktur som är indelad i ett antal kapitel och varje kapitel i ett antal avsnitt.
+
<span style="color:red"><b>Derivata:</b></span> <math> \qquad </math> [http://52.210.62.116:1800/index.php/2.1_Introduktion_till_derivata <span style="color:blue">Simhopp från 10 meterstorn (Elevaktivitet)</span>]
  
* Varje avsnitt har en flik [[1.1 Polynom|<strong><span style="color:blue">Genomgång</span></strong>]] som behandlar ämnets teori och grundbegrepp med hjälp av enkla lösta exempel och korta koncisa förklaringar.
+
<span style="color:red"><b>Extremvärdesproblem:</b></span> <math> \qquad </math> [http://52.210.62.116:1800/index.php/3.5_Extremvärdesproblem#Exempel_1_Rektangel_i_parabel <span style="color:blue">Rektangel i parabel</span>] <math> \qquad </math> [http://52.210.62.116:1800/index.php/3.5_Extremvärdesproblem#Exempel_2_Glasskiva_.28rektangel_i_triangel.29 <span style="color:blue">Glasskiva</span>] <math> \qquad </math> [http://52.210.62.116:1800/index.php/3.5_Extremvärdesproblem#Exempel_3_Konservburk <span style="color:blue">Konservburk</span>] <math> \qquad </math>
  
* Vissa avsnitt har repeterande, fördjupande eller tillämpande underavsnitt som finns i resp. genomgångssidans flikar.
+
<span style="color:red"><b>Diskreta funktioner:</b></span> <math> \qquad </math> [http://52.210.62.116:1800/index.php/1.5_Kontinuerliga_och_diskreta_funktioner#Exempel_3_Fibonaccis_problem <span style="color:blue">Kaniners fortplantning, även kallad Fibonaccis problem (Digital beräkning med Excel)</span>]
  
* Till varje avsnitt finns det en flik [[1.1 Övningar till Polynom|<strong><span style="color:blue">Övningar</span></strong>]] indelad i tre kategorier: E-, C- och A-nivå samt svar med fullständiga lösningar.
+
<span style="color:red"><b>Absolutbelopp:</b></span> <math> \qquad </math> [http://52.210.62.116:1800/index.php/1.6_Absolutbelopp#N.C3.A5gra_exempel_p.C3.A5_absolutbelopp <span style="color:blue">Några exempel på absolutbelopp</span>] <math> \qquad </math> [http://52.210.62.116:1800/index.php/1.6_Absolutbelopp#Ekvationer_med_absolutbelopp <span style="color:blue">Ekvationer med absolutbelopp</span>] <math> \qquad </math> [http://52.210.62.116:1800/index.php/1.6_Fördjupning_till_Absolutbelopp#Falska_r.C3.B6tter <span style="color:blue">Falska rötter</span>]
  
* Klicka på länken nedan för att se ett exempel på en övning:
 
{{#NAVCONTENT:Övning|1.2 Övning 10}}
 
  
* Med en klick på länken nedan kan eleven kontrollera sitt svar till övningen ovan:
 
{{#NAVCONTENT:Svar|1.2 Svar 10}}
 
  
* Länken nedan visar övningens fullständiga lösning med alla mellansteg:
 
{{#NAVCONTENT:Lösning|1.2 Lösning 10}}
 
  
Dessa länkar finns till alla övningar. Därmed har eleverna tillgång inte bara till övningarnas fullständiga lösning utan även till en strukturerad framställning som de kan lära dig av för att redovisa dina lösningar på provet.
 
  
* Några avsnitt har en flik kallad [[1.1 Fördjupning till Polynom|<strong><span style="color:blue">Fördjupning</span></strong>]] som vidareutvecklar teorigenomgången, ofta innehåller bevis och/eller besvarar frågan varför man borde göra så som det står i genomgången.
+
[http://52.210.62.116:1800/index.php/Teoretisk_förklaring <span style="color:blue">Teoretisk förklaring</span>] <math> \qquad\quad\;\; </math> [http://52.210.62.116:1800/index.php/Praktisk_förklaring <span style="color:blue">Praktisk förklaring</span>] <math> \qquad\quad\;\; </math> [http://52.210.62.116:1800/index.php/Vad_som_kan_h%C3%A4nda_om_man_%C3%A4nd%C3%A5_dividerar_med_0 <span style="color:blue">Vad som kan hända om man ändå gör det</span>]
  
* Några avsnitt börjar med en flik kallad [[1.1 Repetition Algebra från Matte 2|<strong><span style="color:blue">Repetition</span></strong>]] som tar upp material från tidigare kurser som är relevant för det aktuella kapitlet eller avsnittet.
 
  
* När man är klar med ett kapitel är det dags för ett [[Diagnosprov kap 2 Derivata|<strong><span style="color:blue">diagnosprov</span></strong>]] som kan visas på skärmen eller laddas ned och genomföras.
 
  
* Till varje diagnosprov finns [[Lösningar till diagnosprov kap 2 Derivata|<strong><span style="color:blue">fullständiga lösningar</span></strong>]] som eleven kan använda för att själv rätta sitt diagnosprov.
 
  
* Alternativt kan ett digitalt provsystem med en databas av Multiple choice-testprov användas som rättar automatiskt för att träna eleverna.
 
  
* Provresultatet kan diskuteras med läraren för att få både [http://www.jisc.ac.uk/guides/feedback-and-feed-forward <strong><span style="color:blue">feedback</span></strong>] och [http://www.edweek.org/tsb/articles/2012/03/01/02formative.h05.html <strong><span style="color:blue">feed-forward</span></strong>] samt kunna vidareutveckla elevens mattekompetens.
 
  
* På så sätt kan eleverna förbereda sig både på lärarens riktiga prov och på det nationella provet.
+
[http://52.210.62.116:1800/index.php/Formulering_&_ledning_för_mattenöten <span style="color:blue">Formulering & ledning</span>] <math> \qquad </math> [http://52.210.62.116:1800/index.php/Lösning_till_mattenöten <span style="color:blue">Lösning</span>] <math> \qquad </math> [http://52.210.62.116:1800/index.php/Svar_till_mattenöten <span style="color:blue">Svar</span>]
 +
 
 +
</td>
 +
 
 +
</tr>
 +
</table>
 +
</div>
  
* Alla avsnitt innehåller [[1.1_Polynom#Internetl.C3.A4nkar|<strong><span style="color:blue">Internetlänkar</span></strong>]] till kompletterande material, ofta små videos på YouTube, demos, animationer, små spel eller extraövningar.
 
  
* Man kan även söka efter ett matematiskt begrepp i sökfältet <b>Sök</b> i vänsterspalten för att få fram de sidor som innehåller sökordet. Sedan kan man navigera vidare genom materialet för att läsa om begreppets matematiska innebörd.
 
  
  
Rad 165: Rad 169:
  
  
[[Matte:Copyrights|Copyright]] © 2011-2015 Math Online Sweden AB. All Rights Reserved.
+
[[Matte:Copyrights|Copyright]] © 2011-2019 Math Online Sweden AB. All Rights Reserved.

Nuvarande version från 3 december 2024 kl. 15.23

       Innehållsförteckning          Centralt innehåll          Kunskapskrav          Formelsamling Matte 3          Aktuell lektion      


Välkommen till Matte 3c i  Math Online \(-\) ett webbaserat digitalt läromedel för matematik

     Bild till vad ar mathonline a.jpg \( \qquad\quad \)


Chebyshev Polyn 2nd 60a.jpg

  Polynomfunktioner av grad \( \, n = 0, 1, \ldots , 5\)


Matematik 3c är en fortsättningskurs och förutsätter förkunskaper från kurser motsvarande Matematik 1c och 2c.

Det som står i fokus av denna kurs är begreppet derivata. För att förbereda eleven på begreppet derivata gås igenom en hel del algebra.

Även olika typer av funktioner som introducerades i kursen Matematik 2c, vidareutvecklas och fördjupas, inkl. naturliga logaritmer.

I kapitlet Användning av derivata lär vi oss att lösa praktiska problem med hjälp av derivata, speciellt extremvärdesproblem.

Kursen fortsätter med derivatans omvända operation, nämligen integration. Det avslutande kapitlet handlar om trigonometri –

läran om beräkning av trianglar. För detaljerat upplägg se innehållsförteckningen.

Matematik 3c är obligatorisk för gymnasiets Naturvetenskapsprogram (NA) och Teknikprogram (TE) och kan ge meritpoäng även som

frivillig kurs för gymnasiets andra program. Den passar också för vuxenutbildningen.

Kursen följer Skolverkets ämnesplan GY 2011.

Matematik 3c motsvarar i stora delar den kurs som i den gamla kursplanen hette Matematik C.


Att komma igång med Matte 3c-kursen

  •   I vänsterspalten ser du länkar till kursens innehåll som du kan an-
      vända för att navigera genom materialet.
  •   Kursen är indelad i fem kapitel. Varje kapitel innehåller ett antal av-
      snitt och avslutas med diagnosprov samt fullständiga lösningar.
  •   Varje avsnitt börjar med en genomgång som behandlar grundbe-
      grepp med hjälp av enkla lösta exempel och förklaringar.
  •   Vissa avsnitt har repeterande, fördjupande eller tillämpande under-
      avsnitt. T.ex. är Potenser ett repeterande underavsnitt i avsnittet
      Polynom.
  •   Till varje avsnitt finns det övningar indelad i tre kategorier: E-, C-
      och A-nivå samt svar (facit) och fullständiga lösningar.  Ex.:  \( \to \)
  •   När man är klar med ett kapitel är det dags för diagnosprov som
      ska förbereda på det riktiga provet.
  •   Till varje diagnosprov finns fullständiga lösningar som man kan
      använda för att själv (eller låta en kompis) rätta sitt diagnosprov.

      \( \quad \) >> \( \quad \)


\( \quad \) >> \( \quad \)


\( \quad \) >> \( \quad \)

  •   Diagnosprovens resultat kan diskuteras med din lärare för att få både feedback och feed-forward samt kunna vidareutveckla dina mattekunskaper.
  •   Alla avsnitt innehåller Internetlänkar till kompletterande material, ofta små videos på YouTube, demos, animationer, små spel eller extraövningar.
  •   Man kan även söka efter ett matematiskt begrepp i sökfältet Sök längst ner i vänsterspalten för att få fram de sidor som innehåller sökordet.


Exempel och försmak på Math Online:s pedagogik

1. Exempelorienterad undervisning:






2. Varför är \( \; 5\,^0 \, = \, 1 \), medan \( \, 5 \cdot 0 \, = \, 0 \; \)?


3. Varför får man inte dividera med \( \, 0 \, \)?


4. Varför går multiplikation före addition?


5. En mattenöt:  Cirkel eller kvadrat?

\( \quad \) Ekvationer: \( \qquad \) Flaska med pant \( \qquad \) Att ställa upp en ekvation \( \qquad \) Lösning \( \qquad \) Svar

Genomsnittlig förändringshastighet: \( \qquad \) Marginalskatt \( \qquad \) Oljetank

Derivata: \( \qquad \) Simhopp från 10 meterstorn (Elevaktivitet)

Extremvärdesproblem: \( \qquad \) Rektangel i parabel \( \qquad \) Glasskiva \( \qquad \) Konservburk \( \qquad \)

Diskreta funktioner: \( \qquad \) Kaniners fortplantning, även kallad Fibonaccis problem (Digital beräkning med Excel)

Absolutbelopp: \( \qquad \) Några exempel på absolutbelopp \( \qquad \) Ekvationer med absolutbelopp \( \qquad \) Falska rötter



Teoretisk förklaring \( \qquad\quad\;\; \) Praktisk förklaring \( \qquad\quad\;\; \) Vad som kan hända om man ändå gör det




Formulering & ledning \( \qquad \) Lösning \( \qquad \) Svar






Copyright © 2011-2019 Math Online Sweden AB. All Rights Reserved.