Skillnad mellan versioner av "1.1 Fördjupning till Polynom"

Från Mathonline
Hoppa till: navigering, sök
m
m
 
(160 mellanliggande versioner av samma användare visas inte)
Rad 1: Rad 1:
 +
__NOTOC__
 
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%"
 
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%"
 
| style="border-bottom:1px solid #797979" width="5px" |  
 
| style="border-bottom:1px solid #797979" width="5px" |  
{{Not selected tab|[[1.1 Repetition Algebra från Matte 2|Repetition: Ekvationer & Potenser]]}}
+
{{Not selected tab|[[Repetitioner från Matte 2|Repetitioner]]}}
 
{{Not selected tab|[[1.1 Polynom|Genomgång]]}}
 
{{Not selected tab|[[1.1 Polynom|Genomgång]]}}
 
{{Not selected tab|[[1.1 Övningar till Polynom|Övningar]]}}
 
{{Not selected tab|[[1.1 Övningar till Polynom|Övningar]]}}
 
{{Selected tab|[[1.1 Fördjupning till Polynom|Fördjupning]]}}
 
{{Selected tab|[[1.1 Fördjupning till Polynom|Fördjupning]]}}
{{Not selected tab|[[1.2 Faktorisering av polynom|Nästa avsnitt <math> \pmb{\to} </math>]]}}
+
{{Not selected tab|[[1.2 Faktorisering av polynom|Nästa avsnitt&nbsp;&nbsp;>> ]]}}
 
| style="border-bottom:1px solid #797979"  width="100%"| &nbsp;
 
| style="border-bottom:1px solid #797979"  width="100%"| &nbsp;
 
|}
 
|}
  
  
[[Media: Lektion_1_Polynom_Rutad.pdf|<b><span style="color:blue">Lektion 1 Polynom</span></b>]]
+
<!-- [[Media: Lektion_3_Polynom_Ruta_a.pdf|<strong><span style="color:blue">Lektion 3 Polynom</span></strong>]]
 
+
[[Media: Lektion 2 Polynom Ruta.pdf|<b><span style="color:blue">Lektion 2 Polynom: Fördjupning</span></b>]]
+
 
+
[[Media: Lektion 3 Polynom Ruta.pdf|<b><span style="color:blue">Lektion 3 Polynom: Fördjupning</span></b>]]
+
__NOTOC__
+
== <b><span style="color:#931136">Digital beräkning av nollställen</span></b> ==
+
 
+
 
+
=== <b><span style="color:#931136">Exempel</span></b> ===
+
 
+
<div class="border-divblue">
+
==== <span style="color:#931136">Simhopp från 10-meterstorn</span> ====
+
 
+
Marie tävlar i simhopp från 10-meterstorn. Hennes hopp följer en bana som beskrivs av:
+
 
+
:::<math> y = - 5\,x^2 + 4\,x + 10 </math>
+
 
+
där <math> \;\quad x \, = \, {\rm Tiden\;i\;sekunder\;efter\;hon\;lämnat\;brädan} </math>
+
 
+
:::<math> y \, = \, {\rm Hennes\;höjd\;över\;vattnet\;i\;meter} </math>
+
 
+
<b>a)</b> &nbsp; Rita grafen till funktionen som beskriver Maries hopp i din räknare.
+
 
+
<b>b)</b> &nbsp; När slår Marie i vattnet? Ange svaret med 4 decimaler.
+
 
+
:Använd din räknares ekvationslösare för att bestämma polynomets nollställe,
+
 
+
:dvs lösa 2:a gradsekvationen<span style="color:black">:</span> <math> \qquad - 5\,x^2 + 4\,x + 10 = 0 </math>
+
</div>
+
 
+
 
+
=== <b><span style="color:#931136">Lösning</span></b> ===
+
 
+
<big>
+
Beskrivningen som ges här bygger på grafräknaren TI-82 STATS, men kan med lite modifikation tillämpas på alla grafräknare.
+
</big>
+
 
+
 
+
<div class="border-divblue">
+
==== <span style="color:#931136">Grafritning</span> ====
+
 
+
<b>a)</b> &nbsp; Rita grafen till funktionen <math> \; y = - 5\,x^2 + 4\,x + 10 \; </math> i din räknare.
+
 
+
Tryck på knappen Y= och skriv in funktionsuttrycket där markören står.
+
 
+
Efter inmatningen ska stå där:
+
 
+
Y1=(-)5X^2+4X+10
+
 
+
Tryck på ENTER.
+
 
+
Tryck på WINDOW.
+
 
+
Mata in följande min-/max-värden samt skala för din räknares display (WINDOW):
+
 
+
<table>
+
<tr>
+
  <td>
+
:::<math> x_{min}\, = 0 </math>
+
 
+
:::<math> x_{max}\, = 2 </math>
+
 
+
:::<math> y_{min}\, = 0 </math>
+
 
+
:::<math> y_{max}\, = 12 </math>
+
 
+
:::<math> x_{scl}\, = 1 </math>
+
 
+
:::<math> y_{scl}\, = 10 </math>
+
</td>
+
  <td> &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;[[Image: Nollstallen med grafraknare_60.jpg]]</td>
+
</tr>
+
</table>
+
 
+
Låt resten stå. Tryck på knappen GRAPH vilket borde rita grafen ovan om allt har gått bra.
+
 
+
Kurvans skärningspunkt med <math> \, x</math>-axeln borde visa det ungefärliga värdet, nämligen <math> \, 1,9 \, </math>.
+
 
+
Dvs polynomets nollställe är <math>\,\approx 1,9 </math> eller höjden y är 0 (Marie slår i vattnet) efter <math> \, \underline{x\, \approx 1,9\,\,{\rm sek}} </math>.
+
</div>
+
 
+
 
+
<big>
+
Vi kan använda detta närmevärde i nästa steg som startvärde för kalkylatorns ekvationslösare som kommer att precisera polynomets nollställe.
+
</big>
+
 
+
 
+
<div class="border-divblue">
+
==== <span style="color:#931136">Ekvationslösning</span> ====
+
 
+
<b>b)</b> &nbsp; När slår Marie i vattnet? Lös ekvationen <math> \; - 5\,x^2 + 4\,x + 10 = 0 \; </math> med 4 decimalers noggrannhet.
+
 
+
Tryck i miniräknaren på knappen MATH.
+
 
+
Gå med piltangenten till <b>Solver...</b>
+
 
+
Tryck på ENTER.
+
 
+
Mata in polynomet där markören står så att det efteråt står följande två rader i displayen:
+
 
+
EQUATION SOLVER
+
 
+
eqn:0=(-)5X^2+4X+10
+
 
+
Tryck först på knappen ALPHA (orange) och sedan på SOLVE (i orange ovanpå ENTER).
+
 
+
Mata in startvärdet <math> \, x\, \approx 1,9 \, </math> som vi fick fram i <b>a)</b> och tryck en gång till på först ALPHA och sedan SOLVE.
+
 
+
Värdet <math> \, x = 1,8696938456... \, </math> visas i displayen vilket betyder:
+
 
+
Marie slår i vattnet efter <math> \underline{1,8697\,\,{\rm sek}}</math>.
+
</div>
+
 
+
 
+
== <b><span style="color:#931136">Simhopp från 10-meterstorn - del 2</span></b> ==
+
 
+
<big> Vill du veta varför vid grafritning just de min-/max-värdena samt skalan för din räknares display (WINDOW) valdes, läs här:</big>
+
 
+
<div class="ovnE">
+
{{#NAVCONTENT:Del 2 av simhopp från 10-meterstorn.|Simhopp från 10-meterstorn - del 2}}
+
</div>
+
 
+
  
 +
[[Media: Lektion 4 Polynom Ruta.pdf|<strong><span style="color:blue">Lektion 4 Polynom: Fördjupning</span></strong>]]
 +
-->
 
== <b><span style="color:#931136">Polynomfunktioner av högre grad</span></b> ==
 
== <b><span style="color:#931136">Polynomfunktioner av högre grad</span></b> ==
 
<big>
 
<big>
När ett polynom tilldelas en annan variabel, säg <math> \, y \, </math> bildas en <strong><span style="color:red">polynomfunktion</span></strong>. I Matte 1-kursen hade vi bara linjära eller 1:a gradsfunktioner av typ:
+
När ett polynom tilldelas en annan variabel, säg <math> \, y \, </math> bildas en <b><span style="color:red">polynomfunktion</span></b>. I Matte 1-kursen hade vi bara linjära eller 1:a gradsfunktioner av typ<span style="color:black">:</span>
  
 
:::<math> y = 4\,x + 12 </math>  
 
:::<math> y = 4\,x + 12 </math>  
  
Till höger om likhetstecknet står ett polynom där <math> \, x \, </math> förekommer som 1:a gradspotens dvs med exponenten <math> \, 1 \, </math>. Därför kallas <math> \, 4\,x \, </math> polynomets linjära term. Polynomets konstanta term är <math> \, 12 </math>. Grafen till denna 1:a gradsfunktion är en rät linje. I Matte 2-kursen gick vi ett steg vidare och sysslade med 2:a gradsfunktioner av typ:
+
Till höger om likhetstecknet står ett polynom där <math> \, x \, </math> förekommer som 1:a gradspotens dvs med exponenten <math> \, 1 \, </math>. Därför kallas <math> \, 4\,x \, </math> polynomets linjära term. Polynomets konstanta term är <math> \, 12 </math>. Grafen till denna 1:a gradsfunktion är en rät linje. I Matte 2-kursen gick vi ett steg vidare och sysslade med 2:a gradsfunktioner av typ<span style="color:black">:</span>
  
 
:::<math> y = 3\,x^2 + 5\,x - 16 </math>  
 
:::<math> y = 3\,x^2 + 5\,x - 16 </math>  
Rad 162: Rad 43:
 
Den har framför allt fler minima, maxima och nollställen.
 
Den har framför allt fler minima, maxima och nollställen.
  
Funktionens fyra nollställen är identiska med lösningarna till 4:e gradsekvationen:
+
Funktionens fyra nollställen är identiska med lösningarna till 4:e gradsekvationen<span style="color:black">:</span>
  
 
:::<math> x^4 - 29\;x^2 + 100 = 0 </math>
 
:::<math> x^4 - 29\;x^2 + 100 = 0 </math>
Rad 173: Rad 54:
  
  
== <b><span style="color:#931136">En rekursiv familj av högre grads polynomfunktioner: Chebyshevpolynom</span></b> ==
+
== <b><span style="color:#931136">En familj av högre grads polynomfunktioner</span></b> ==
 
<big>
 
<big>
Ett polynoms grad är ett mått på dess komplexitet. För att se hur komplexiteten växer med graden ska vi titta på följande sex polynom vars grafer är ritade i samma koordinatsystem. Man ser att kurvorna svänger oftare och får fler maxima/minima ju högre deras grad är:
+
Ett polynoms grad är ett mått på dess komplexitet: Ju högre grad, desto oftare svänger kurvorna och desto fler maxima/minima har de. Här ser man sex polynom vars grafer är ritade i samma koordinatsystem:
  
 
<table>
 
<table>
 
<tr>
 
<tr>
 
   <td> &nbsp;  &nbsp; &nbsp;  &nbsp; &nbsp;  &nbsp; [[Image: Chebyshev_Polyn_2nd Formler.jpg]]</td>
 
   <td> &nbsp;  &nbsp; &nbsp;  &nbsp; &nbsp;  &nbsp; [[Image: Chebyshev_Polyn_2nd Formler.jpg]]</td>
   <td> &nbsp;  &nbsp; &nbsp;  &nbsp; &nbsp;  &nbsp; &nbsp;  &nbsp; &nbsp;  &nbsp; &nbsp;  &nbsp; [[Image: Chebyshev_Polyn_2nd_60.jpg]]</td>
+
   <td> &nbsp;  &nbsp; &nbsp;  &nbsp; &nbsp;  &nbsp; &nbsp;  &nbsp; &nbsp;  &nbsp; &nbsp;  &nbsp; [[Image: Chebyshev_Polyn_2nd_60a.jpg]]</td>
 
</tr>
 
</tr>
</table>
+
</table></big>
Dessa polynom kallas efter den ryske matematikern [http://en.wikipedia.org/wiki/Pafnuty_Chebyshev <b><span style="color:blue">Chebyshev</span></b>] som presenterade dem 1854. De är relaterade till varandra med följande s.k.
+
=== <b><span style="color:#931136">Polynom av <math> n</math>-te grad har <math> n-1  </math> svängningar (maxima/minima):</span></b> ===
 +
<big>
 +
<math> U_5(x) </math> (svart kurva) är av <math> 5</math>:e grad och har <math> 4  </math> svängningar (maxima/minima).
 +
 
 +
<math> U_4(x) </math> (gul kurva) är av <math> 4</math>:e grad och har <math> 3  </math> svängningar (maxima/minima).
 +
 
 +
<math> U_3(x) </math> (grön kurva) är av <math> 3</math>:e grad och har <math> 2  </math> svängningar (maxima/minima).
 +
 
 +
<math> U_2(x) </math> (blå kurva) är av <math> 2</math>:a grad och har <math> 1  </math> svängning (maxima/minima).
 +
 
 +
Dessa polynom kallas för [http://mathworld.wolfram.com/ChebyshevPolynomialoftheSecondKind.html <b><span style="color:blue">Chebyshevpolynom</span></b>] efter den ryske matematikern [http://en.wikipedia.org/wiki/Pafnuty_Chebyshev <b><span style="color:blue">Chebyshev</span></b>] som definierade dem 1854 med följande s.k.
 
</big>
 
</big>
 
=== <b><span style="color:#931136">Rekursionsformel</span></b> ===
 
=== <b><span style="color:#931136">Rekursionsformel</span></b> ===
Rad 193: Rad 84:
 
</div>
 
</div>
  
<big>
 
De nedsänkta [[1.1_Polynom#Allm.C3.A4n_definition|<b><span style="color:blue">indexen</span></b>]] <math>_0,\,_1,\,_2,\,_3,\,_4,\,_5</math> i beteckningarna <math>U_0, U_1, U_2, U_3, U_4, U_5\,</math> används här både för att relatera indexet till polynomets grad och kunna skriva rekursionsformeln ovan för dessa polynom.
 
  
En familj eller en följd av polynom bildar polynomen <math>U_n(x)\,</math> därför att alla hänger ihop och definieras via rekursionsformeln.
+
<div class="exempel">
 
+
=== <b><span style="color:#931136">Användning av rekursionsformeln</span></b> ===
Ordet <i>rekursiv</i> kommer från <i>recurrere</i> på latin som på engelska betyder att gå tillbaka och köra igen (eng. <i>to run back</i> eller <i>to run again</i>).
+
 
+
Rekursion är ett koncept som används för att få fram resultat genom <b><span style="color:red">successiv upprepning</span></b> av beräkningar.
+
 
+
<b><span style="color:red">Rekursionsformeln</span></b> ger oss möjligheten att ta fram [http://mathworld.wolfram.com/ChebyshevPolynomialoftheSecondKind.html <strong><span style="color:blue">Chebyshevpolynomen</span></strong>] rekursivt (successivt). Detta betyder att vi kan ställa upp ett polynom med hjälp av de två föregående. De första två Chebyshevpolynomen <math> \, U_0, \, U_1 \, </math> är explicit angivna (i den andra raden). Det tredje Chebyshevpolynomet <math>U_2\,</math> får man genom att sätta in <math> \, U_0, \, U_1 \,</math> i högerledet av rekursionsformeln (i den första raden). Det fjärde Chebyshevpolynomet <math> \, U_3 \, </math> får man genom att sätta in <math> \, U_1, \, U_2 \, </math> i högerledet osv.
+
 
+
Alla Chebyshevpolynom definieras och genereras av rekursionsformeln ovan därför att de kan beräknas utgående från de två första. Ett exempel visas nedan.
+
</big>
+
 
+
<div class="exempel"> <!-- exempelx -->
+
=== <b><span style="color:#931136">Exempel på rekursiv beräkning av Chebyshevpolynom</span></b> ===
+
 
<big>
 
<big>
 
Ställ upp de Chebyshevpolynomen <math> \, U_2, \, U_3, \, U_4\,</math> med hjälp av de två första <math> \, U_0, \, U_1 </math>.
 
Ställ upp de Chebyshevpolynomen <math> \, U_2, \, U_3, \, U_4\,</math> med hjälp av de två första <math> \, U_0, \, U_1 </math>.
Rad 216: Rad 94:
 
::<math> U_1(x) = \underline{2\,x} </math>
 
::<math> U_1(x) = \underline{2\,x} </math>
  
För <math>n = 2\,</math> ger rekursionsformeln:
+
För <math>n = 2\,</math> ger rekursionsformeln<span style="color:black">:</span>
  
 
::<math> U_2(x) = 2\,x\,\cdot\,U_1(x)\,-\,U_0(x) = 2\,x\,\cdot\,2\,x\,-\,1 = \underline{4\,x^2\,-\,1} </math>
 
::<math> U_2(x) = 2\,x\,\cdot\,U_1(x)\,-\,U_0(x) = 2\,x\,\cdot\,2\,x\,-\,1 = \underline{4\,x^2\,-\,1} </math>
  
Sedan kan vi få fram <math> U_3(x) </math> genom att att sätta in n = 3 i rekursionsformeln:
+
Sedan kan vi få fram <math> U_3(x) </math> genom att att sätta in n = 3 i rekursionsformeln<span style="color:black">:</span>
  
 
::<math> U_3(x) = 2\,x\,\cdot\;U_2(x)\,-\,U_1(x) = 2\,x\,\cdot\,(4\,x^2\,-\,1)\,-\,2\,x = 8\,x^3\,-\,2\,x\,-\,2\,x = \underline{8\,x^3\,-\,4\,x} </math>
 
::<math> U_3(x) = 2\,x\,\cdot\;U_2(x)\,-\,U_1(x) = 2\,x\,\cdot\,(4\,x^2\,-\,1)\,-\,2\,x = 8\,x^3\,-\,2\,x\,-\,2\,x = \underline{8\,x^3\,-\,4\,x} </math>
  
För <math>n = 4\,</math> ger rekursionsformeln <math> U_4(x) </math> osv.:
+
För <math>n = 4\,</math> ger rekursionsformeln <math> U_4(x) </math> osv.<span style="color:black">:</span>
  
 
::<math> U_4(x) = 2\,x\,\cdot\,U_3(x)\,-\,U_2(x) = 2\,x\,\cdot\,(8\,x^3\,-\,4\,x)\,-\,(4\,x^2\,-\,1) = 16\,x^4\,-\,8\,x^2\,-\,4\,x^2\,+\,1 = \underline{16\,x^4\,-\,12\,x^2\,+\,1} </math>
 
::<math> U_4(x) = 2\,x\,\cdot\,U_3(x)\,-\,U_2(x) = 2\,x\,\cdot\,(8\,x^3\,-\,4\,x)\,-\,(4\,x^2\,-\,1) = 16\,x^4\,-\,8\,x^2\,-\,4\,x^2\,+\,1 = \underline{16\,x^4\,-\,12\,x^2\,+\,1} </math>
</big></div> <!-- exempelx -->
+
</big></div>
  
<div class="tolv"> <!-- tolv3a -->
+
 
Förfarandet är rekursivt eftersom man ställer upp nästa polynom med hjälp av de två föregående. [[1.1_Polynom#Att_r.C3.A4kna_med_polynom|<strong><span style="color:blue">Att räkna med polynom</span></strong>]] lärde vi oss i genomgången av polynom.
+
<big>
</div class="tolv"> <!-- tolv3a -->
+
De nedsänkta [[1.1_Polynom#Allm.C3.A4n_definition|<b><span style="color:blue">indexen</span></b>]] <math>_0,\,_1,\,_2,\,_3,\,_4,\,_5</math> i beteckningarna <math>U_0, U_1, U_2, U_3, U_4, U_5\,</math> används både för att relatera indexet till polynomets grad och kunna definiera dem med rekursionsformeln.
 +
 
 +
<b><span style="color:red">Rekursion</span></b> är ett koncept som används för att få fram resultat genom <b><span style="color:red">successiv upprepning</span></b> av beräkningar.
 +
 
 +
Rekursionsformeln ger oss möjligheten att ställa upp ett Chebyshevpolynom med hjälp av de två föregående. De första två Chebyshevpolynomen <math> \, U_0, \, U_1 \, </math> är explicit angivna i rekursionsformelns andra rad. Det tredje Chebyshevpolynomet <math>U_2\,</math> får man genom att sätta in <math> \, U_0, \, U_1 \,</math> i rekursionsformelns högerled. Det fjärde Chebyshevpolynomet <math> \, U_3 \, </math> får man genom att sätta in <math> \, U_1, \, U_2 \, </math> i högerledet. <math>U_4\,</math> får man genom att sätta in <math> \, U_2, \, U_3 \,</math> i högerledet osv.
 +
</big>
  
  
Rad 237: Rad 120:
 
<div class="tolv"> <!-- tolv4 -->
 
<div class="tolv"> <!-- tolv4 -->
  
Jämförelse av koefficienter är en teknik eller en metod som vi kommer att använda för att lösa högre gradsekvationer genom att faktorisera polynom av högre grad än 2, se [[1.1 Övningar till Polynom#Övning 10|<strong><span style="color:blue">övningarna 10-12</span></strong>]]. Metoden bygger på begreppet likhet mellan polynom.  
+
Jämförelse av koefficienter är en teknik eller en metod som vi kommer att använda för att lösa högre gradsekvationer genom att faktorisera polynom av högre grad än 2, se [[1.1 Övningar till Polynom#Övning 10|<b><span style="color:blue">övningarna 10-12</span></b>]]. Metoden bygger på begreppet likhet mellan polynom.  
 
</div> <!-- tolv4 -->
 
</div> <!-- tolv4 -->
  
 +
<big><big><b>Definition:</b></big></big>
  
 
<div class="border-divblue"> <!-- border-div2 -->
 
<div class="border-divblue"> <!-- border-div2 -->
 
<big>
 
<big>
<strong>Definition:</strong> <math> \quad </math> <span style="color:red">Två polynom</span>
+
<span style="color:red">Två polynom</span>
  
:::::<math> \; P(x) = a_n \cdot x^n + a_{n-1} \cdot x^{n-1} + \quad \ldots \quad + a_1 \cdot x + a_0 </math>
+
<math> \qquad P(x) = a_n \cdot x^n + a_{n-1} \cdot x^{n-1} + \quad \ldots \quad + a_1 \cdot x + a_0 \quad </math>
  
:::::<math> \; Q(x) = b_n \cdot x^n + b_{n-1} \cdot x^{n-1} + \quad \ldots \quad + b_1 \cdot x + b_0 </math>
+
<math> \qquad Q(x) = b_n \cdot x^n + b_{n-1} \cdot x^{n-1} + \quad \ldots \quad + b_1 \cdot x + b_0 </math>
  
<span style="color:red">är lika med varandra</span> om de har samma grad och om alla deras motsvarande koefficienter, dvs om:
+
<span style="color:red">är lika med varandra</span> om de har samma grad och om
  
:::::<math> \; a_n = b_n, \qquad a_{n-1} = b_{n-1}, \qquad \ldots \qquad a_1 = b_1, \qquad a_0 = b_0 </math>
+
alla deras motsvarande koefficienter är lika med varandra, dvs om<span style="color:black">:</span>
 +
 
 +
<math> \qquad a_n = b_n, \qquad a_{n-1} = b_{n-1}, \qquad \ldots \qquad a_1 = b_1, \qquad a_0 = b_0 \quad </math>
 
</big>
 
</big>
 
</div> <!-- border-divblue -->
 
</div> <!-- border-divblue -->
Rad 259: Rad 145:
 
=== <span style="color:#931136">Exempel 1</span> ===
 
=== <span style="color:#931136">Exempel 1</span> ===
  
Följande två polynom är givna där <math> a\, </math> och <math> b\, </math> är konstanter medan <math> x\, </math> är polynomens oberoende variabel:
+
Följande två polynom är givna där <math> a\, </math> och <math> b\, </math> är konstanter medan <math> x\, </math> är polynomens oberoende variabel<span style="color:black">:</span>
  
 
::<math> P(x) = a \cdot x + 2\,a + b </math>
 
::<math> P(x) = a \cdot x + 2\,a + b </math>
Rad 269: Rad 155:
 
'''Lösning:'''
 
'''Lösning:'''
  
Vi skriver <math> P(x),\, </math> och <math> Q(x)\, </math> så att vi lättare kan se motsvarande koefficienter:
+
Vi skriver <math> P(x),\, </math> och <math> Q(x)\, </math> så att vi lättare kan se motsvarande koefficienter<span style="color:black">:</span>
  
 
::<math> P(x) = a \cdot x^1 + (2\,a + b) \cdot x^0 </math>
 
::<math> P(x) = a \cdot x^1 + (2\,a + b) \cdot x^0 </math>
Rad 275: Rad 161:
 
::<math> Q(x) = 2 \cdot x^1 + \quad\;\; 1 \quad\;\; \cdot x^0 </math>
 
::<math> Q(x) = 2 \cdot x^1 + \quad\;\; 1 \quad\;\; \cdot x^0 </math>
  
Jämförelse av koefficienterna till <math> x^1\, </math> leder till:
+
Jämförelse av koefficienterna till <math> x^1\, </math> leder till<span style="color:black">:</span>
  
 
::<math> a = 2\,</math>
 
::<math> a = 2\,</math>
  
Jämförelse av koefficienterna till <math> x^0 \,</math> leder till:
+
Jämförelse av koefficienterna till <math> x^0 \,</math> leder till<span style="color:black">:</span>
  
 
::<math> 2\,a + b = 1\!\,</math>  
 
::<math> 2\,a + b = 1\!\,</math>  
Rad 285: Rad 171:
 
Sätter man in <math> a = 2\, </math> i denna relation får man <math> b = -3\, </math>.
 
Sätter man in <math> a = 2\, </math> i denna relation får man <math> b = -3\, </math>.
  
Polynomen <math> P(x)\, </math> och <math> Q(x)\, </math> är lika med varandra för:
+
Polynomen <math> P(x)\, </math> och <math> Q(x)\, </math> är lika med varandra för<span style="color:black">:</span>
  
 
::<math> a = 2\, </math>  
 
::<math> a = 2\, </math>  
Rad 293: Rad 179:
  
  
<div class="exempel12"> <!-- exempel4 -->
+
<!-- <div class="exempel12"> exempel4 -->
=== <span style="color:#931136">Exempel 2</span> ===
+
== <b><span style="color:#931136">Polynomdivision med jämförelse av koefficienter</span></b> ==
 
+
<div class="ovnE">
Följande 3:e gradspolynom är givet
+
  
::<math> P(x) = x^3 + 4\,x^2 + x - 26 </math>
+
'''Uppgift:''' <math> \qquad </math> Utför polynomdivisionen <math> \quad (x^3 + 4\,x^2 + x - 26) \; / \; (x-2) </math>
  
Hitta ett 2:a gradspolynom <math> Q(x)\, </math> så att:
+
En annan formulering av uppgiften är:
  
::<math> Q(x)\cdot (x-2) = P(x) </math>
+
Hitta ett 2:a gradspolynom <math> \, Q(x)\, </math> så att <math> \, Q(x)\cdot (x-2) = (x^3 + 4\,x^2 + x - 26) </math>
  
 
'''Lösning:'''
 
'''Lösning:'''
  
Det 2:a gradspolynomet <math> Q(x)\, </math> kan skrivas så här:
+
Vi inför beteckningen<span>:</span> <math> \quad\;\;\, P(x) = x^3 + 4\,x^2 + x - 26 </math>.
  
::<math> Q(x) = a\,x^2 + b\,x + c </math>  
+
Det 2:a gradspolynomet <math> Q(x)\, </math> kan skrivas så här<span>:</span> <math> \qquad Q(x) = a\,x^2 + b\,x + c </math>  
  
Vi bestämmer koefficienterna <math> a\, , \, b\, </math> och <math> c\, </math> så att <math> {\color{White} x} Q(x)\cdot (x-2) \, = \, P(x) </math>
+
Vi bestämmer koefficienterna <math> a\, , \, b\, </math> och <math> c\, </math> så att <math> \; Q(x)\cdot (x-2) \, = \, P(x) </math><span style="color:black">:</span>
  
 
::<math>\begin{array}{rclc} Q(x) \cdot (x - 2) & = & (a\,x^2 + b\,x + c)\cdot (x - 2) & = \\
 
::<math>\begin{array}{rclc} Q(x) \cdot (x - 2) & = & (a\,x^2 + b\,x + c)\cdot (x - 2) & = \\
Rad 319: Rad 204:
 
\end{array} </math>
 
\end{array} </math>
  
Jämförelse av koefficienterna till <math> x^3 </math>-termen ger:
+
Jämförelse av koefficienterna till <math> x^3 </math>-termen ger<span style="color:black">:</span>
  
 
::::<math> a = 1 </math>
 
::::<math> a = 1 </math>
  
Jämförelse av koefficienterna till <math> x^2 </math>-termen ger:
+
Jämförelse av koefficienterna till <math> x^2 </math>-termen ger<span style="color:black">:</span>
  
 
::<math>\begin{align} -2\,a + b    & = 4  \\
 
::<math>\begin{align} -2\,a + b    & = 4  \\
 
                       -2\cdot 1 + b & = 4  \\  
 
                       -2\cdot 1 + b & = 4  \\  
 
                             - 2 + b & = 4  \\
 
                             - 2 + b & = 4  \\
                                b & = 6  \\
+
                                  b & = 6  \\
 
         \end{align} </math>
 
         \end{align} </math>
  
Jämförelse av koefficienterna till <math> x^1 </math>-termen ger:
+
Jämförelse av koefficienterna till <math> x^1 </math>-termen ger<span style="color:black">:</span>
  
 
::<math>\begin{align} -2\,b + c & = 1  \\
 
::<math>\begin{align} -2\,b + c & = 1  \\
Rad 339: Rad 224:
 
         \end{align} </math>
 
         \end{align} </math>
  
Jämförelse av koefficienterna till <math> x^0 \, </math>-termen bekräftar värdet på <math> c \, </math>:
+
Jämförelse av koefficienterna till <math> x^0 \, </math>-termen bekräftar värdet på <math> c \, </math><span style="color:black">:</span>
  
 
::<math>\begin{align} - 2\,c & = - 26  \\
 
::<math>\begin{align} - 2\,c & = - 26  \\
Rad 345: Rad 230:
 
         \end{align} </math>
 
         \end{align} </math>
  
Vi får <math> a = 1\, , \, b = 6\, </math> och <math> c = 13\, </math> och därmed:
+
Vi får <math> a = 1\, , \, b = 6\, </math> och <math> c = 13\, </math> och därmed<span style="color:black">:</span> <math> \quad Q(x) = x^2 + 6 \, x + 13 </math>
  
::<math> Q(x) = x^2 + 6 \, x + 13 </math>
+
 
 +
Alltså är<span style="color:black">:</span> <math> \qquad (x^3 + 4\,x^2 + x - 26) \; / \; (x-2) \; = \; x^2 + 6 \, x + 13</math>
 
</div> <!-- exempel4 -->
 
</div> <!-- exempel4 -->
  
Rad 354: Rad 240:
 
<div class="tolv"> <!-- tolv5 -->
 
<div class="tolv"> <!-- tolv5 -->
  
* I litteraturen förekommer även ett annat namn för den metod som beskrevs ovan. Istället för [[1.1_Fördjupning_till_Polynom#J.C3.A4mf.C3.B6relse_av_koefficienter|<strong><span style="color:blue">jämförelse av koefficienter</span></strong>]] som vi använder pratar man om <strong><span style="color:red">metoden med obestämda koefficienter</span></strong> (eng.: the method of undetermined coefficients). Med obestämda koefficienter menar man den ansats som man i början gör med obestämda koefficienter som man sedan bestämmer under metodens gång.
+
* &nbsp; &nbsp; <b><span style="color:red">Polynomdivision</span></b> kan även genomföras genom att direkt dividera polynomen med varandra, se Matte 4-kursen. Den är mer generell därför att den kan användas också för andra problem, t.ex. faktorisering av polynom eller lösning av differentialekvationer. Jämförelse av koefficienter ger mer insikt i polynomens struktur.
 +
 
 +
* &nbsp; &nbsp; Ett annat namn för jämförelse av koefficienter är <b><span style="color:red">Metoden med obestämda koefficienter</span></b> (eng.: <i>Method of undetermined coefficients</i>). Med obestämda koefficienter menar man den ansats som man i början gör med obestämda koefficienter som man sedan bestämmer under metodens gång.
 +
 
 +
* &nbsp; &nbsp; Ytterligare ett namn för samma metod är <b><span style="color:red">Ansatsmetoden</span></b>.
  
* I några kursböcker behandlas <strong><span style="color:red">polynomdivision</span></strong> istället för jämförelse av koefficienter, för att åstadkomma faktorisering av högre gradspolynom. Vi menar att det algebraiskt är besvärligare med polynomdivision. Jämförelse av koefficienter åstadkommer samma sak med mindre arbete och ger dessutom mer insikt i polynomens struktur.
 
 
</div> <!-- tolv5 -->
 
</div> <!-- tolv5 -->
  
Rad 366: Rad 255:
  
  
[[Matte:Copyrights|Copyright]] © 2011-2016 Math Online Sweden AB. All Rights Reserved.
+
[[Matte:Copyrights|Copyright]] © 2022 [https://www.techpages.se <b><span style="color:blue">TechPages AB</span></b>]. All Rights Reserved.

Nuvarande version från 24 mars 2022 kl. 16.50

       Repetitioner          Genomgång          Övningar          Fördjupning          Nästa avsnitt  >>      


Polynomfunktioner av högre grad

När ett polynom tilldelas en annan variabel, säg \( \, y \, \) bildas en polynomfunktion. I Matte 1-kursen hade vi bara linjära eller 1:a gradsfunktioner av typ:

\[ y = 4\,x + 12 \]

Till höger om likhetstecknet står ett polynom där \( \, x \, \) förekommer som 1:a gradspotens dvs med exponenten \( \, 1 \, \). Därför kallas \( \, 4\,x \, \) polynomets linjära term. Polynomets konstanta term är \( \, 12 \). Grafen till denna 1:a gradsfunktion är en rät linje. I Matte 2-kursen gick vi ett steg vidare och sysslade med 2:a gradsfunktioner av typ:

\[ y = 3\,x^2 + 5\,x - 16 \]

Här är graden \( \, 2 \). Den kvadratiska termen är \( \, 3\,x^2 \, \), den linjära termen \( \, 5\,x\, \) och den konstanta termen \( \, -16 \). Grafen till denna 2:a gradfunktion är en parabel. Dessa funktioner kallas polynomfunktioner därför att uttrycken till höger om likhetstecken är polynom, dvs summor av termer där exponenterna till \( \, x\)-potenserna är positiva heltal eller \( \, 0 \). I Matte 3-kursen ska vi nu lära oss att hantera även polynom av högre grad än \( \, 2 \).


Exempel på polynomfunktion av högre grad

Vi tar som exempel följande 4:e gradspolynomfunktion:

\[ y = x^4 - 29\;x^2 + 100 \]

vars graf till höger är mer komplicerad än en parabel.

Den har framför allt fler minima, maxima och nollställen.

Funktionens fyra nollställen är identiska med lösningarna till 4:e gradsekvationen:

\[ x^4 - 29\;x^2 + 100 = 0 \]

            4-e gradspolynom 70 70.jpg


En familj av högre grads polynomfunktioner

Ett polynoms grad är ett mått på dess komplexitet: Ju högre grad, desto oftare svänger kurvorna och desto fler maxima/minima har de. Här ser man sex polynom vars grafer är ritade i samma koordinatsystem:

            Chebyshev Polyn 2nd Formler.jpg                         Chebyshev Polyn 2nd 60a.jpg

Polynom av \( n\)-te grad har \( n-1 \) svängningar (maxima/minima):

\( U_5(x) \) (svart kurva) är av \( 5\):e grad och har \( 4 \) svängningar (maxima/minima).

\( U_4(x) \) (gul kurva) är av \( 4\):e grad och har \( 3 \) svängningar (maxima/minima).

\( U_3(x) \) (grön kurva) är av \( 3\):e grad och har \( 2 \) svängningar (maxima/minima).

\( U_2(x) \) (blå kurva) är av \( 2\):a grad och har \( 1 \) svängning (maxima/minima).

Dessa polynom kallas för Chebyshevpolynom efter den ryske matematikern Chebyshev som definierade dem 1854 med följande s.k.

Rekursionsformel

\( U_n(x) = 2\,x\,\cdot\,U_{n-1}(x)\,-\,U_{n-2}(x) \qquad\qquad n = 2, 3, ... \)

\( U_0(x) = 1, \quad U_1(x) = 2\,x \)


Användning av rekursionsformeln

Ställ upp de Chebyshevpolynomen \( \, U_2, \, U_3, \, U_4\,\) med hjälp av de två första \( \, U_0, \, U_1 \).

\[ \displaystyle U_0(x) = \underline{1} \]
\[ U_1(x) = \underline{2\,x} \]

För \(n = 2\,\) ger rekursionsformeln:

\[ U_2(x) = 2\,x\,\cdot\,U_1(x)\,-\,U_0(x) = 2\,x\,\cdot\,2\,x\,-\,1 = \underline{4\,x^2\,-\,1} \]

Sedan kan vi få fram \( U_3(x) \) genom att att sätta in n = 3 i rekursionsformeln:

\[ U_3(x) = 2\,x\,\cdot\;U_2(x)\,-\,U_1(x) = 2\,x\,\cdot\,(4\,x^2\,-\,1)\,-\,2\,x = 8\,x^3\,-\,2\,x\,-\,2\,x = \underline{8\,x^3\,-\,4\,x} \]

För \(n = 4\,\) ger rekursionsformeln \( U_4(x) \) osv.:

\[ U_4(x) = 2\,x\,\cdot\,U_3(x)\,-\,U_2(x) = 2\,x\,\cdot\,(8\,x^3\,-\,4\,x)\,-\,(4\,x^2\,-\,1) = 16\,x^4\,-\,8\,x^2\,-\,4\,x^2\,+\,1 = \underline{16\,x^4\,-\,12\,x^2\,+\,1} \]


De nedsänkta indexen \(_0,\,_1,\,_2,\,_3,\,_4,\,_5\) i beteckningarna \(U_0, U_1, U_2, U_3, U_4, U_5\,\) används både för att relatera indexet till polynomets grad och kunna definiera dem med rekursionsformeln.

Rekursion är ett koncept som används för att få fram resultat genom successiv upprepning av beräkningar.

Rekursionsformeln ger oss möjligheten att ställa upp ett Chebyshevpolynom med hjälp av de två föregående. De första två Chebyshevpolynomen \( \, U_0, \, U_1 \, \) är explicit angivna i rekursionsformelns andra rad. Det tredje Chebyshevpolynomet \(U_2\,\) får man genom att sätta in \( \, U_0, \, U_1 \,\) i rekursionsformelns högerled. Det fjärde Chebyshevpolynomet \( \, U_3 \, \) får man genom att sätta in \( \, U_1, \, U_2 \, \) i högerledet. \(U_4\,\) får man genom att sätta in \( \, U_2, \, U_3 \,\) i högerledet osv.


Jämförelse av koefficienter

Jämförelse av koefficienter är en teknik eller en metod som vi kommer att använda för att lösa högre gradsekvationer genom att faktorisera polynom av högre grad än 2, se övningarna 10-12. Metoden bygger på begreppet likhet mellan polynom.

Definition:

Två polynom

\( \qquad P(x) = a_n \cdot x^n + a_{n-1} \cdot x^{n-1} + \quad \ldots \quad + a_1 \cdot x + a_0 \quad \)

\( \qquad Q(x) = b_n \cdot x^n + b_{n-1} \cdot x^{n-1} + \quad \ldots \quad + b_1 \cdot x + b_0 \)

är lika med varandra om de har samma grad och om

alla deras motsvarande koefficienter är lika med varandra, dvs om:

\( \qquad a_n = b_n, \qquad a_{n-1} = b_{n-1}, \qquad \ldots \qquad a_1 = b_1, \qquad a_0 = b_0 \quad \)


Exempel 1

Följande två polynom är givna där \( a\, \) och \( b\, \) är konstanter medan \( x\, \) är polynomens oberoende variabel:

\[ P(x) = a \cdot x + 2\,a + b \]
\[ Q(x) = 2\,x + 1\!\, \]

För vilka värden på \( a\, \) och \( b\, \) är de två polynomen lika med varandra?

Lösning:

Vi skriver \( P(x),\, \) och \( Q(x)\, \) så att vi lättare kan se motsvarande koefficienter:

\[ P(x) = a \cdot x^1 + (2\,a + b) \cdot x^0 \]
\[ Q(x) = 2 \cdot x^1 + \quad\;\; 1 \quad\;\; \cdot x^0 \]

Jämförelse av koefficienterna till \( x^1\, \) leder till:

\[ a = 2\,\]

Jämförelse av koefficienterna till \( x^0 \,\) leder till:

\[ 2\,a + b = 1\!\,\]

Sätter man in \( a = 2\, \) i denna relation får man \( b = -3\, \).

Polynomen \( P(x)\, \) och \( Q(x)\, \) är lika med varandra för:

\[ a = 2\, \]
\[ b = -3\, \]


Polynomdivision med jämförelse av koefficienter

Uppgift: \( \qquad \) Utför polynomdivisionen \( \quad (x^3 + 4\,x^2 + x - 26) \; / \; (x-2) \)

En annan formulering av uppgiften är:

Hitta ett 2:a gradspolynom \( \, Q(x)\, \) så att \( \, Q(x)\cdot (x-2) = (x^3 + 4\,x^2 + x - 26) \)

Lösning:

Vi inför beteckningen: \( \quad\;\;\, P(x) = x^3 + 4\,x^2 + x - 26 \).

Det 2:a gradspolynomet \( Q(x)\, \) kan skrivas så här: \( \qquad Q(x) = a\,x^2 + b\,x + c \)

Vi bestämmer koefficienterna \( a\, , \, b\, \) och \( c\, \) så att \( \; Q(x)\cdot (x-2) \, = \, P(x) \):

\[\begin{array}{rclc} Q(x) \cdot (x - 2) & = & (a\,x^2 + b\,x + c)\cdot (x - 2) & = \\ & = & a\,x^3 - 2\,a\,x^2 + b\,x^2 - 2\,b\,x + c\,x - 2\,c & = \\ & = & a\,x^3 + (-2\,a + b)\,x^2 + (-2\,b + c)\,x - 2\,c & = \\ & = & a \cdot x^3 + (-2\,a + b) \cdot x^2 + (-2\,b + c) \cdot x - 2\,c \cdot x^0 & \\ P(x) & = & 1 \cdot x^3 + \quad\;\;\;\;4 \quad\;\; \cdot x^2 + \quad\;\;\;\,1 \quad\;\; \cdot x - 26 \cdot x^0 \end{array} \]

Jämförelse av koefficienterna till \( x^3 \)-termen ger:

\[ a = 1 \]

Jämförelse av koefficienterna till \( x^2 \)-termen ger:

\[\begin{align} -2\,a + b & = 4 \\ -2\cdot 1 + b & = 4 \\ - 2 + b & = 4 \\ b & = 6 \\ \end{align} \]

Jämförelse av koefficienterna till \( x^1 \)-termen ger:

\[\begin{align} -2\,b + c & = 1 \\ -2\cdot 6 + c & = 1 \\ -12 + c & = 1 \\ c & = 13 \\ \end{align} \]

Jämförelse av koefficienterna till \( x^0 \, \)-termen bekräftar värdet på \( c \, \):

\[\begin{align} - 2\,c & = - 26 \\ c & = 13 \\ \end{align} \]

Vi får \( a = 1\, , \, b = 6\, \) och \( c = 13\, \) och därmed: \( \quad Q(x) = x^2 + 6 \, x + 13 \)


Alltså är: \( \qquad (x^3 + 4\,x^2 + x - 26) \; / \; (x-2) \; = \; x^2 + 6 \, x + 13\)


Anmärkningar

  •     Polynomdivision kan även genomföras genom att direkt dividera polynomen med varandra, se Matte 4-kursen. Den är mer generell därför att den kan användas också för andra problem, t.ex. faktorisering av polynom eller lösning av differentialekvationer. Jämförelse av koefficienter ger mer insikt i polynomens struktur.
  •     Ett annat namn för jämförelse av koefficienter är Metoden med obestämda koefficienter (eng.: Method of undetermined coefficients). Med obestämda koefficienter menar man den ansats som man i början gör med obestämda koefficienter som man sedan bestämmer under metodens gång.
  •     Ytterligare ett namn för samma metod är Ansatsmetoden.





Copyright © 2022 TechPages AB. All Rights Reserved.