Skillnad mellan versioner av "1.1 Övningar till Polynom"

Från Mathonline
Hoppa till: navigering, sök
m
m
 
(13 mellanliggande versioner av samma användare visas inte)
Rad 2: Rad 2:
 
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%"
 
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%"
 
| style="border-bottom:1px solid #797979" width="5px" |  
 
| style="border-bottom:1px solid #797979" width="5px" |  
{{Not selected tab|[[1.1 Repetition Algebra från Matte 2|Repetition: Ekvationer & Potenser]]}}
 
 
{{Not selected tab|[[1.1 Polynom|Genomgång]]}}
 
{{Not selected tab|[[1.1 Polynom|Genomgång]]}}
 
{{Selected tab|[[1.1 Övningar till Polynom|Övningar]]}}
 
{{Selected tab|[[1.1 Övningar till Polynom|Övningar]]}}
 +
{{Not selected tab|[[Media: Formelsamling NP Ma3.pdf|Formelsamling Matte 3]]}}
 
{{Not selected tab|[[1.1 Fördjupning till Polynom|Fördjupning]]}}
 
{{Not selected tab|[[1.1 Fördjupning till Polynom|Fördjupning]]}}
{{Not selected tab|[[1.2 Faktorisering av polynom|Nästa avsnitt <math> \pmb{\to} </math>]]}}
+
{{Not selected tab|[[1.2 Faktorisering av polynom|Nästa avsnitt&nbsp;&nbsp;>> ]]}}
 
| style="border-bottom:1px solid #797979"  width="100%"| &nbsp;
 
| style="border-bottom:1px solid #797979"  width="100%"| &nbsp;
 
|}
 
|}
Rad 43: Rad 43:
  
 
I fall att det är polynom ange polynomets grad samt polynomets koefficienter.
 
I fall att det är polynom ange polynomets grad samt polynomets koefficienter.
{{#NAVCONTENT:Svar 1a|1.2 Svar 1a|Lösning 1a|1.2 Lösning 1a|Svar 1b|1.2 Svar 1b|Lösning 1b|1.2 Lösning 1b|Svar 1c|1.2 Svar 1c|Lösning 1c|1.2 Lösning 1c|Svar 1d|1.2 Svar 1d|Lösning 1d|1.1 Lösning 1d}}</div>
+
{{#NAVCONTENT:Svar 1a|1.1 Svar 1aa|Lösning 1a|1.1 Lösning 1aa|Svar 1b|1.1 Svar 1bb|Lösning 1b|1.1 Lösning 1bb|Svar 1c|1.2 Svar 1c|Lösning 1c|1.2 Lösning 1c|Svar 1d|1.2 Svar 1d|Lösning 1d|1.1 Lösning 1d}}</div>
  
  
Rad 118: Rad 118:
 
== <b>Övning 7</b> ==
 
== <b>Övning 7</b> ==
 
<div class="ovnC">
 
<div class="ovnC">
Följande två [[1.1_Fördjupning_till_Polynom#En_rekursiv_familj_av_h.C3.B6gre_grads_polynomfunktioner|<b><span style="color:blue">Chebyshevpolynom</span></b>]] är givna:
+
Följande två [[1.1_Fördjupning_till_Polynom#En_familj_av_h.C3.B6gre_grads_polynomfunktioner|<b><span style="color:blue">Chebyshevpolynom</span></b>]] är givna<span style="color:black">:</span>
  
 
::<math> U_3(x) = 8\,x^3\,-\,4\,x </math>
 
::<math> U_3(x) = 8\,x^3\,-\,4\,x </math>
Rad 124: Rad 124:
 
::<math> U_4(x) = 16\,x^4\,-\,12\,x^2\,+\,1 </math>
 
::<math> U_4(x) = 16\,x^4\,-\,12\,x^2\,+\,1 </math>
  
Utveckla <math> \displaystyle U_5(x) </math> med hjälp av Chebyshevpolynomens rekursionsformel:
+
Beräkna <math> \displaystyle U_5(x) </math> utgående från <math> \, U_3(x) \, </math> och <math> \, U_4(x) \, </math> med hjälp av
 +
 
 +
Chebyshevpolynomens rekursionsformel<span style="color:black">:</span>
  
 
::<math> U_n(x) = 2\,x\,\cdot\,U_{n-1}(x)\,-\,U_{n-2}(x) \qquad\qquad n = 2, 3, ... </math>
 
::<math> U_n(x) = 2\,x\,\cdot\,U_{n-1}(x)\,-\,U_{n-2}(x) \qquad\qquad n = 2, 3, ... </math>
  
Tips: Se [[1.1_Fördjupning_till_Polynom#Rekursiv_ber.C3.A4kning_av_de_f.C3.B6rsta_Chebyshevpolynomen|<b><span style="color:blue">Rekursiv beräkning av de första Chebyshevpolynomen</span></b>]], där <math> \, U_4(x) </math>
+
Tips: Se [[1.1_Fördjupning_till_Polynom#Anv.C3.A4ndning_av_rekursionsformeln|<b><span style="color:blue">Användning av rekursionsformeln</span></b>]], där <math> \, U_4(x) </math> beräknas
  
beräknas utgående från <math> \, U_2(x) \, </math> och <math> \, U_3(x) \, </math> med hjälp av rekursionsformeln.
+
utgående från <math> \, U_2(x) \, </math> och <math> \, U_3(x) \, </math> med hjälp av rekursionsformeln.
  
 
{{#NAVCONTENT:Svar 7|1.2 Svar 7|Lösning 7|1.2 Lösning 7}}</div>
 
{{#NAVCONTENT:Svar 7|1.2 Svar 7|Lösning 7|1.2 Lösning 7}}</div>
Rad 388: Rad 390:
  
  
[[Matte:Copyrights|Copyright]] © 2011-2016 Math Online Sweden AB. All Rights Reserved.
+
[[Matte:Copyrights|Copyright]] © 2019 [https://www.techpages.se <b><span style="color:blue">TechPages AB</span></b>]. All Rights Reserved.

Nuvarande version från 6 maj 2019 kl. 18.21

       Genomgång          Övningar          Formelsamling Matte 3          Fördjupning          Nästa avsnitt  >>      


E-övningar: 1-6


Övning 1

Två förstagradspolynom är givna:

\[ 3\,x - 5 \qquad {\rm och} \qquad - 8\,x - 6 \]
Bilda deras


\( \qquad \) a)   summa

\( \qquad \) c)   produkt

\( \qquad \) b)   differens

\( \qquad \) d)   kvot.

Förenkla så mycket som möjligt.

Ange varje gång om resultatet är ett polynom.

I fall att det är polynom ange polynomets grad samt polynomets koefficienter.


Övning 2

Gör samma sak som i övning 1 med andragradspolynomen

\[ 4\,x^2 - 7\,x + 2 \qquad {\rm och} \qquad -4\,x^2 - 5\,x \]


Övning 3

Följande uttryck är givet:

\[ P(x) = 4\,x^3 - 2\,x^2\,(2\,x + 6) + 7\,x\,(3 + 2\,x) \]

a)   Utveckla \( P(x)\, \) till ett polynom.

b)   Använd polynomet från a) för att beräkna \( P(-1)\, \).

c)   Bestäm alla nollställen till \( P(x)\, \).


Övning 4

Utveckla följande uttryck och ordna termerna så att det blir ett polynom:

a)   \( \displaystyle (x-2)^2 + (x+1)^2 \)

b)   Beräkna värdet av polynomet du fick fram i a) för \( x = -2\, \).


Övning 5

En rakets bana beskrivs av polynomfunktionen:

\[ y = 90\,x - 4,9\,x^2 \]

där y är höjden i meter och x tiden i sekunder.

a)   Visa att raketen har både efter 2,586 och 15,781 sekunder en höjd på 200 meter över marken.

b)   Vilken maximal höjd når raketen? Svara i hela meter.


Övning 6

Betrakta raketens bana i övning 5. Använd din grafritande räknare för att genomföra följande uppgifter:

a)   Undersök vilka min- och max-värden samt vilken skala man lämpligast bör använda på x- och y-axeln

för att rita raketbanans graf. Ange dem i din räknares WINDOW.

b)   Rita raketbanans graf och den räta linjen som åskådliggör höjden 200 m i samma koordinatsystem.

c)   När slår raketen i marken? Använd din räknares ekvationslösare. Svara med tre decimaler.



C-övningar: 7-10


Övning 7

Följande två Chebyshevpolynom är givna:

\[ U_3(x) = 8\,x^3\,-\,4\,x \]
\[ U_4(x) = 16\,x^4\,-\,12\,x^2\,+\,1 \]

Beräkna \( \displaystyle U_5(x) \) utgående från \( \, U_3(x) \, \) och \( \, U_4(x) \, \) med hjälp av

Chebyshevpolynomens rekursionsformel:

\[ U_n(x) = 2\,x\,\cdot\,U_{n-1}(x)\,-\,U_{n-2}(x) \qquad\qquad n = 2, 3, ... \]

Tips: Se Användning av rekursionsformeln, där \( \, U_4(x) \) beräknas

utgående från \( \, U_2(x) \, \) och \( \, U_3(x) \, \) med hjälp av rekursionsformeln.


Övning 8

Ställ upp ett polynom av 4:e grad som har koefficienterna:

\[ \displaystyle a_4 = 3, \quad a_3 = 2, \quad a_2 = -3, \quad a_1 = -4, \quad a_0 = -3 \]


Övning 9

Visa att följande uttryck är identiskt med polynomet från övning 8 ovan:

\[ 2\,(x^2 - 1)^2 + (x + 2)\,(x^3 - 2) - 2\,x + x^2 - 1 \]


Övning 10

Två polynom är givna:

\[ P(x) = 2\,a \cdot x + 3\,a - 4\,b \]
\[ Q(x) = 4 \cdot x - 6 \]

För vilka värden av \( a\, \) och \( b\, \) är \( P(x) = Q(x)\, \)? Använd jämförelse av koefficienter.



A-övningar: 11-12


Övning 11

Följande 2:a gradspolynom är givet:

\[ P(x) = x^2 - 10\,x + 16 \]

a)   Utveckla uttrycket \( Q(x) = (x - a) \cdot (x - b) \) till ett polynom. Bestäm \( a\, \) och \( b\, \) så att \( P(x) = Q(x)\, \).

Använd jämförelse av koefficienter.

b)   Visa att de värden du får för \( a\, \) och \( b\, \) i a)-delen är lösningar till 2:a gradsekvationen:

\[ x^2 - 10\,x + 16 = 0 \]


Övning 12

Visa att 2:a gradspolynomet \( P(x) = 8\,x^2 + 7\,x - 1 \) kan skrivas som

\[ (a\,x + b) \cdot (c\,x + d) \]

vilket innebär en faktorisering av polynomet \( P(x)\, \). Bestäm a, b, c och d genom att:

a)   Hitta först polynomet \( P(x)\, \):s nollställen (rötter) \( x_1\, \) och \( x_2\, \) exakt, dvs bibehåll bråkformen.

b)   Sätt sedan \( P(x) = k \cdot (x - x_1) \cdot (x - x_2) \) och bestäm k genom jämförelse av koefficienter.

Ange a, b, c och d.






Copyright © 2019 TechPages AB. All Rights Reserved.