Skillnad mellan versioner av "1.4 Lösning 10d"
Från Mathonline
		
		
		
Taifun  (Diskussion | bidrag) m (Created page with "Man kommer inte att se någon skillnad i graferna till <math> f(x)\, </math> och <math> g(x)\, </math>. Men att av detta dra slutsatsen att funktionerna är identiska, är felakt...")  | 
				Taifun  (Diskussion | bidrag)  m  | 
				||
| (2 mellanliggande versioner av samma användare visas inte) | |||
| Rad 1: | Rad 1: | ||
| − | Man kommer inte att se någon skillnad i graferna till <math> f(x)\, </math> och <math> g(x)\, </math>. Men att av detta dra slutsatsen att funktionerna är identiska, är felaktigt, därför de skiljer sig i sitt beteende för <math> x = -2\, </math>.    | + | Man kommer inte att se någon skillnad i graferna till <math> f(x)\, </math> och <math> g(x)\, </math>. Men att av detta dra slutsatsen att funktionerna är identiska, är felaktigt, därför att de skiljer sig i sitt beteende för <math> x = -2\, </math>.    | 
| − | Medan <math> f(x)\, </math> fortfarande inte är definierad för <math> x = -2\, </math> - även om denna diskontinuitet är hävbar - är <math> g(x)\, </math> definierad för detta x-värde.  | + | Medan <math> f(x)\, </math> fortfarande inte är definierad för <math> x = -2\, </math> - även om denna diskontinuitet är hävbar - är <math> g(x)\, </math> definierad och kontinuerlig för detta <math> \, x</math>-värde.  | 
Nuvarande version från 3 augusti 2014 kl. 23.17
Man kommer inte att se någon skillnad i graferna till \( f(x)\, \) och \( g(x)\, \). Men att av detta dra slutsatsen att funktionerna är identiska, är felaktigt, därför att de skiljer sig i sitt beteende för \( x = -2\, \).
Medan \( f(x)\, \) fortfarande inte är definierad för \( x = -2\, \) - även om denna diskontinuitet är hävbar - är \( g(x)\, \) definierad och kontinuerlig för detta \( \, x\)-värde.