Skillnad mellan versioner av "1.3 Fördjupning till Rationella uttryck"

Från Mathonline
Hoppa till: navigering, sök
m
m
 
(874 mellanliggande versioner av samma användare visas inte)
Rad 1: Rad 1:
 +
__NOTOC__
 
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%"
 
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%"
 
| style="border-bottom:1px solid #797979" width="5px" |  
 
| style="border-bottom:1px solid #797979" width="5px" |  
{{Not selected tab|[[Repetition Bråkräkning från Matte 1|Repetition Bråkräkning]]}}
+
{{Not selected tab|[[1.2 Faktorisering av polynom| <<&nbsp;&nbsp;Förra avsnitt]]}}
{{Not selected tab|[[1.3 Rationella uttryck|Teori]]}}
+
{{Not selected tab|[[1.3 Rationella uttryck|Genomgång]]}}
 
{{Not selected tab|[[1.3 Övningar till Rationella uttryck|Övningar]]}}
 
{{Not selected tab|[[1.3 Övningar till Rationella uttryck|Övningar]]}}
 
{{Selected tab|[[1.3 Fördjupning till Rationella uttryck|Fördjupning]]}}
 
{{Selected tab|[[1.3 Fördjupning till Rationella uttryck|Fördjupning]]}}
{{Not selected tab|[[1.3 Internetlänkar till Rationella uttryck|Internetlänkar]]}}
+
{{Not selected tab|[[1.4 Talet e och den naturliga logaritmen|Nästa avsnitt&nbsp;&nbsp;>> ]]}}
 
| style="border-bottom:1px solid #797979"  width="100%"| &nbsp;
 
| style="border-bottom:1px solid #797979"  width="100%"| &nbsp;
 
|}
 
|}
 +
[[1.3 Repetition: Tal i bråkform|&nbsp;&nbsp;&nbsp;&nbsp; <<&nbsp;&nbsp;Repetition: Tal i bråkform]]
  
 +
<!-- [[Media: Lektion 6 Rationella uttryck Rutab.pdf|<b><span style="color:blue">Lektion 6 Rationella uttryck</span></b>]]
 +
[[Media: Lektion 7 Rationella uttryck Ruta.pdf|<b><span style="color:blue">Lektion 7 Rationella uttryck</span></b>]]
 +
[[Media: Lektion 8 Rationella uttryck Ruta.pdf|<b><span style="color:blue">Lektion 8 Rationella uttryck: Fördjupning</span></b>]] -->
  
 +
<big>
 +
<div class="border-divblue">
 +
<b><span style="color:#931136">Division med <math> \, 0 \, </math> är inom de reella talen inte definierad.</span></b>
 +
</div>
  
== Hävbara och icke-hävbara diskontinuiteter ==
+
<math> \quad </math> [http://34.248.89.132:1800/index.php?title=Varf%C3%B6r_%C3%A4r_division_med_0_inte_definierad%3F <b><span style="color:blue">Varför?</span></b>]
 +
<math> \qquad\qquad\qquad </math> [http://34.248.89.132:1800/index.php/Vad_som_kan_hända_om_man_ändå_dividerar_med_0 <b><span style="color:blue">Vad händer om man ändå dividerar med 0?</span></b>]
 +
</big>
  
Vi har hittills använt bråktalens räkneregler för att räkna med rationella uttryck utan att stöta på några hinder. Men vi får inte glömma att rationella uttryck ändå är komplexare objekt. Därför är det inte förvånansvärt att de har egenskaper som inte längre kan jämföras med motsvarigheter hos bråktal. En av dessa visas upp när man förkortar dem efter faktorisering av täljaren och nämnaren.
 
  
[[Image: 14f_Förkort_Diskont.jpg]]
+
== <b><span style="color:#931136">Rationella funktioner</span></b> ==
  
Efter faktorisering av täljaren och nämnaren samt förkortning med faktorn <math> (x+3)\, </math> förenklas det rationella uttrycket väsentligt. Men denna förkortning är endast korrekt om <math> x \not= -3 </math> eftersom förkortning med <math> (x+3)\,</math> innebär division med 0 om <math> x = -3\, </math>. Likhetstecknet mellan de rationella uttrycken gäller endast under förutsättningen <math> x \not= -3 </math>. Det enklare uttrycket är identiskt med det ursprungliga inte för alla x utan för alla utom för <math> x = -3\, </math>. Det blir ännu tydligare när vi betraktar dem som rationella funktioner. Då uppsår nämligen frågan: Vad händer med diskontinuiteten i <math> x = -3 </math> som försvinner efter att vi förkortat uttrycket med faktorn <math> (x+3) </math>? Och vad är det för skillnad mellan diskontinuiteterna i <math> x = -3 </math> och <math> x = 3 </math>? För att undersöka dessa frågor skriver vi dem som funktioner och ritar båda funktioners grafer:
+
<big>
 +
En <b><span style="color:red">rationell funktion</span></b> är ett rationellt uttryck som tilldelas en annan variabel, t.ex. <math> \, y</math>.  
 +
</big>
  
::<math>\begin{align} y_3 & = {2\,x^2 + 6\,x \over x^2 - 9} = {2\,x\,(x + 3) \over (x + 3)\,(x - 3)} \\
 
                                                                                                    \\
 
                y_4 & = {2\,x \over x - 3}\end{align} </math> [[Image: Vit_5,64cm.jpg]] [[Image: 14ay_Förkort_Förläng_2_1_disk.jpg]]
 
  
I den vänstra delen av bilden ser man grafen till funktionen <math> y_3\,</math> och i den högra delen grafen till funktionen <math> y_4\,</math>. Till synes visar resultatet helt identiska kurvor. Men i själva verket vet vi att funktionen <math> y_3 </math> inte är definierad för <math> x = -3 </math> och har en diskontinuitet där. Därför har dess graf (kurvan till vänster) ett "hål" eller en "lucka" i <math> x = -3 </math> som man inte ser. Så grafen lurar oss. Vi måste hålla oss till <math> y_3 </math>:s funktionsuttryck ovan som klart visar <u>två</u> diskontinuiteter, en i <math> x = -3 </math> och den andra i <math> x = 3 </math>. Den första som vi lyckades få bort genom förkortning, är en s.k. <span style="color:red">hävbar diskontinuitet</span> medan den andra är icke-hävbar. Utan att gå närmare in på detta (överkurs) kan vi bara säga att hävbara diskontinuiteter är sådana som är "snälla" och kan repareras. I det här fallet skulle man kunna t.ex. komplettera funktionen <math> y_3 </math>:s definition med att <math> y_3 </math> ska vara 1 för <math> x = -3 </math>. Man kan nämligen visa att <math> y_3 </math> går mot ett ändligt värde när x går mot -3 båda från vänster och höger. Vi behöver inte genomföra beviset utan kan nöja oss med att förkorta uttrycket med faktorn <math> (x+3) </math>. Att det ändliga värdet, det s.k. gränsvärdet, blir 1 kan vi få fram genom att beräkna värdet av <math> y_4 </math> för <math> x = -3 </math>:
+
<div class="ovnC">
 +
=== <span style="color:#931136">Exempel 1</span> ===
 +
Det rationella uttrycket <math> \, \displaystyle{\frac{1}{x}} \, </math> tilldelas variabeln <math> \, y \, </math>, vilket ger den <b><span style="color:red">rationella funktionen</span></b> samt grafen:
  
:::::::::::::::<math> y_4 (-3) = {2 \cdot (-3) \over -3 - 3} = {-6 \over -6} = 1 </math>
+
<div class="border-div20"> <big><math> \displaystyle y = {1 \over x} </math></big> </div> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; [[Image: Praktisk forklaring.jpg]]
  
Då är det möjligt att definiera en ny funktion <math> \tilde{y}_3 </math> som är lite modifierad gentemot <math> y_3\, </math>. Modifikationen består i att lägga till värdet 1 i den nya funktionen för <math> x = -3 </math> så att den blir både definierad och kontinuerlig för <math> x = -3 </math>. Annars är den identisk med <math> y_3\, </math>. Så här brukar man definiera den nya funktion <math> \tilde{y}_3 </math>:
+
:::::::<b><span style="color:red">Funktionen är inte definierad för <math> \; {\color{Red} {x = 0}} </math>. </span></b>
  
 +
Till skillnad från polynomfunktioners graf har denna graf två skilda grenar, uttryckt i matematiska termer:
  
:::::::::::::::<math>\tilde{y}_3 = \begin{cases} \displaystyle {2\,x^2 + 6\,x \over x^2 - 9} &, \text{om}\; x \neq -3 \\
+
En polynomfunktion är alltid kontinuerlig: Dess graf kan ritas utan att man lyfter pennan från papperet.
                                                                                                                      \\
+
                                                \quad 1                        &, \text{om}\; x  =  -3
+
                                  \end{cases}</math>
+
  
 +
I grafen ovan måste vid <math> x = 0\, </math> pennan lyftas för att gå från grafens ena gren till den andra.
  
Denna definition är uppdelad i två olika fall: För alla x utom <math> x = -3 </math> definieras funktionen <math> \tilde{y}_3 </math> enligt det rationella uttrycket för <math> y_3\, </math>, medan för <math> x = -3 </math> har den värdet 1. <math> \tilde{y}_3 </math> kallas den <span style="color:red">kontinuerliga fortsättningen</span> av <math> y_3 </math>. Den är lämpligare att användas istället för <math> y_3 </math> eftersom man hat lyckats att eliminera åtminstone den hävbara diskontinuiteten.  
+
Dvs grafen är inte sammanhängande i <math> x = 0\, </math>.
  
Den andra faktorn <math> (x-3) </math> i <math> y_3 </math>:s nämnare som inte kan förkortas ger upphov till den andra diskontinuiteten av <math> y_3 </math> i <math> x = 3 </math>. Denna diskontinuitet är dock inte hävbar. I <math> x = 3 </math> går <math> y_3 </math> inte mot ett ändligt värde utan mot oändligheten när x går mot 3. Därför är diskontinuiteten i <math> x = 3 </math> kvar och synlig i graferna av både <math> y_3 </math> och <math> y_4 </math>. Den är, till skillnad från den första, en <span style="color:red">icke-hävbar diskontinuitet</span> och kan inte repareras på något sätt. Denna "allvarliga" diskontinuitet finns även kvar i den kontinuerliga fortsättningen <math> \tilde{y}_3 </math> och är icke-hävbar även där.
+
Man säger att funktionen är <b><span style="color:red">diskontinuerlig</span></b> (icke-kontinuerlig) i <math> \, x = 0 </math>.  
  
 +
Anledningen till denna <b><span style="color:red">diskontinuitet</span></b> är att <math> \; y = </math> <math> \displaystyle {1 \over x} \; </math> inte är definierad för <math> x = 0\, </math>.
  
 +
När <math> \, x \, </math> närmar sig <math> 0\, </math> går <math> y\, </math> mot oändligheten, vilket kan inses både algebraiskt och grafiskt.
  
[[Matte:Copyrights|Copyright]] © 2011-2014 Taifun Alishenas. All Rights Reserved.
+
Man måste undanta <math> x = 0\, </math> från funktionens definitionsmängd:
 +
 
 +
Den rationella funktionen <math> y = </math> <math> \displaystyle {1 \over x}</math><span style="color:black">:s</span> <b><span style="color:red">definitionsmängd</span></b> är<span style="color:black">:</span> <math> \qquad \boxed{{\rm Alla}\quad x \quad {\rm med} \quad x \neq 0} </math>
 +
</div>
 +
 
 +
 
 +
<big>Matte 2:
 +
 
 +
<div class="border-divblue">
 +
En funktions <b><span style="color:red">definitionsmängd</span></b> är mängden av alla <math> \, x \, </math> för vilka funktionen är definierad.
 +
</div>
 +
 
 +
 
 +
Diskontinuiteten <u>för vissa</u> <math> \, x \, </math> är något typiskt för alla rationella funktioner och
 +
 
 +
det är det som skiljer dem från polynomfunktioner som är definierade och kontinuerliga för <u>alla</u> <math> x\, </math>.
 +
 
 +
Diskontinuiteten <u>för vissa</u> <math> \, x\, </math> innebär att det är bara några isolerade <math> \, x</math>-värden som en rationell funktion <u>kan</u> vara diskontinuerlig för.
 +
 
 +
Det finns även rationella funktioner som inte har några reella diskontinuiteter, dvs de är kontinuerliga för alla reella <math> \, x\, </math>. Här följer ett exempel:
 +
</big>
 +
 
 +
 
 +
<div class="ovnC">
 +
=== <span style="color:#931136">Exempel 2</span> ===
 +
En "snäll" rationell funktion samt graf utan reell diskontinuitet:
 +
<div class="border-div20"> <big><math> \displaystyle y_1 = {6\,x \over x^2 + 1} </math></big> </div> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; [[Image: Rat_fkt_utan_disk.jpg]]
 +
 
 +
 
 +
<b><span style="color:red">Grafen</span></b> visar inga diskontinuiteter.
 +
 
 +
<b><span style="color:red">Algebraiskt</span></b> har funktionsuttryckets nämnare inga reella nollställen, dvs ekvationen
 +
 
 +
<math> x^2 + 1 = 0\, </math> saknar reell lösning. Den ger nämligen <math> \, x^2 = -1 </math>. Och <math> \, \sqrt{-1} \, </math> är inget reellt tal.
 +
 
 +
Ekvationen har endast de komplexa lösningarna <math> \, x_1 = i \, </math> och <math> \, x_2 = -i </math>.
 +
 
 +
<b>Slutsats:</b> Den rationella funktionen <math> \, y_1</math><span style="color:black">:s</span> <b><span style="color:red">definitionsmängd</span></b> är<span style="color:black">:</span> <math> \quad\;\; \boxed{{\rm Alla\;reella\;tal}\quad x} </math>
 +
</div>
 +
 
 +
 
 +
<div class="ovnA">
 +
=== <span style="color:#931136">Exempel 3</span> ===
 +
En liten ändring i <math> \, y_1</math>:s nämnare från <math> \, x^2 \, \bf{{\color{Red} +}} \, 1 \, </math> till <math> \, x^2 \, \bf{{\color{Red} -}} \, 1 \, </math> resulterar i en annan funktion med ett annat beteende:
 +
 
 +
<div class="border-div20"> <big><math> \displaystyle y_2 = {6\,x \over x^2 - 1} = {6\,x \over (x + 1) \cdot (x - 1)} </math></big> </div> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; [[Image: Rat_fkt_med_disk.jpg]]
 +
 
 +
<b><span style="color:red">Grafen</span></b> är updelad i tre grenar och har två diskontinuiteter, dvs två ställen där den inte är kontinuerlig,
 +
 
 +
dvs inte sammanhängande<span style="color:black">:</span> <math> \, x\, = \, -1 \, </math> och <math> \, x\, = \, 1 </math>. När <math> \, x\, </math> närmar sig dessa två ställen går <math> \, y_2\,</math> mot oändligheten.
 +
 
 +
<b><span style="color:red">Algebraiskt</span></b> har nämnaren i <math> \, y_2 \, </math> nollställena <math> \, x = 1 \, </math> och <math> \, x = -1 </math>. Därför har <math> \, y_2 \, </math> diskontinuiteter i dessa punkter. 
 +
 
 +
:::::::::::::<big><math> \Downarrow </math></big>
 +
 
 +
<b>Slutsats:</b> Den rationella funktionen <math> \, y_2</math><span style="color:black">:s</span> <b><span style="color:red">definitionsmängd</span></b> är<span style="color:black">:</span> <math> \qquad \boxed{{\rm Alla}\quad x \quad {\rm med} \quad x \neq -1 \; {\rm och} \; x \neq 1} </math>
 +
</div>
 +
 
 +
 
 +
<div class="ovnC">
 +
=== <b><span style="color:#931136">Hävbara och icke-hävbara diskontinuiteter</span></b> ===
 +
 
 +
<div class="exempel">
 +
 
 +
==== <span style="color:#931136">Exempel</span> ====
 +
 
 +
:[[Image: 14f_Förkort_Diskont.jpg]]
 +
</div>
 +
 
 +
Vi skriver de rationella uttrycken ovan som funktioner och ritar deras grafer för att besvara
 +
 
 +
<b>Frågan:</b> &nbsp;&nbsp; Är det <b>en</b> funktion i två olika skepnader eller är det <b>två</b> olika funktioner?
 +
<table>
 +
<tr>
 +
  <td><div class="border-div20">
 +
<math>\begin{align} f\,(x) & = {2\,x^2 + 6\,x \over x^2 - 9} = {2\,x\,{\color{Red} {(x + 3)}} \over {\color{Red} {(x + 3)}}\,(x - 3)} \\
 +
                    g\,(x) & = {2\,x \over x - 3}
 +
      \end{align} </math>
 +
</div>
 +
<b>Svaret:</b> &nbsp;&nbsp; <math> f(x) \, </math> och <math> \, g\,(x) \, </math> är <b><span style="color:red">två olika funktioner</span></b> eftersom
 +
 
 +
deras definitionsmängder är olika<span style="color:black">:</span>
 +
 
 +
<math> f(x)</math><span style="color:black">:s</span> <b><span style="color:red">definitionsmängd</span></b> är<span style="color:black">:</span> <math> \boxed{{\rm Alla} \, x \, {\rm med} \, x \neq -3 \, {\rm och} \, x \neq 3} </math>
 +
 
 +
<math> g\,(x)</math><span style="color:black">:s</span> <b><span style="color:red">definitionsmängd</span></b> är<span style="color:black">:</span> <math> \boxed{{\rm Alla} \, x \, {\rm med} \, x \neq 3} </math>
 +
</td>
 +
  <td>[[Image: Havbar_ickehavbar_disk.jpg]]</td>
 +
</tr>
 +
</table>
 +
 
 +
<b><span style="color:red">OBS!</span></b> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; Likheten <math> \, {2\,x\,{\color{Red} {(x + 3)}} \over {\color{Red} {(x + 3)}}\,(x - 3)} \, = \, {2\,x \over x - 3} \, </math> gäller inte för alla <math> \, x \, </math> utan endast för alla <math> \, x \not= -3 </math>. Anledningen är:
 +
 
 +
:::Förkortningen med <math> \, {\color{Red} {(x + 3)}} \, </math> är endast korrekt om <math> \, x \not= -3 </math> eftersom den innebär division med <math> \, {\color{Red} {(x + 3)}} \, </math> som är <math> \, 0\,</math> när <math> \, x = -3\, </math>.
 +
 
 +
:::Se upp för division med <math> \, 0 \,</math> i uttryck, för den är oftast gömd. Läs: [http://34.248.89.132:1800/index.php/Vad_som_kan_hända_om_man_ändå_dividerar_med_0 <b><span style="color:blue">Vad händer om man ändå dividerar med 0 ?</span></b>].
 +
 
 +
Graferna lurar oss: Med blotta ögat ser man knappast någon skillnad mellan <math> f(x) \, </math> och <math> \, g\,(x) </math>. Men om du förstorar <math> f(x)</math>:s graf kan du se i den ett "hål" eller en "lucka" i <math> \, x = -3 </math>, vilket beror på att <math> f(x) \, </math> inte är definierad där. Grafen "hoppar" över <math> \, x = -3 \, </math> så att säga. Men till skillnad från <math> \, x = 3 \, </math> går funktionen inte mot oändligheten i den närmaste omgivningen av <math> \, x = -3 </math>. Anledningen till det är att <math> \, x = -3 \, </math> är en <b><span style="color:red">hävbar diskontinuitet</span></b>, till skillnad från <math> \, x = 3 \, </math> som är en <b><span style="color:red">icke-hävbar diskontinuitet</span></b>.
 +
 
 +
 
 +
<div class="border-divblue">
 +
<math> x = -3 </math> kallas för en <b><span style="color:red">hävbar diskontinuitet</span></b> eftersom <math> (x+3) </math> kan förkortas bort i <math> f(x) </math> och försvinner då från nämnaren.
 +
 
 +
<math> \, x = 3 \, </math> kallas för en <b><span style="color:red">icke-hävbar diskontinuitet</span></b> eftersom <math> \, (x-3) \, </math> finns kvar i nämnaren av <math> f(x) </math>.
 +
</div>
 +
 
 +
 
 +
</div>
 +
 
 +
 
 +
<big>Men hur häver man en hävbar diskontinuitet?</big>
 +
 
 +
 
 +
<div class="ovnA">
 +
=== <b><span style="color:#931136">Kontinuerlig fortsättning</span></b> ===
 +
 
 +
Hävbara diskontinuiteter är "snälla". Funktioner med hävbara diskontinuiteter kan "repareras":
 +
 
 +
Det gör man genom att definiera en ny funktion som inte längre har den ursprungliga funktionens hävbara diskontinuitet, men är annars identisk med den.
 +
 
 +
I exemplet ovan skulle man kunna t.ex. komplettera funktionen <math> f(x)\, </math>:s definition med ett värde för <math> \, x = -3 \, </math> som gör att den nya funktionen blir kontinuerlig i sin omgivning. Man får fram detta värde genom att beräkna värdet av <math> \, \displaystyle {g\,(x) = {2\,x \over x - 3}} \, </math> för <math> \, x = -3 </math><span style="color:black">:</span>
 +
 
 +
::::::::<math> g\,(-3) = {2 \cdot (-3) \over -3 - 3} = {-6 \over -6} = 1 </math>
 +
 
 +
Värdet <math> \, 1 \, </math> läggs till i den nya funktionen för <math> \, x = -3 </math>. Så blir den kontinuerliga fortsättningen en modifierad version av <math> f(x) </math> som består just av det här tillägget. För alla andra <math> \, x \, </math> är den nya funktionen identisk med den gamla <math> f(x) </math>.
 +
 
 +
Så här kan den nya funktionen <math>-</math> kallad den <b><span style="color:red">kontinuerliga fortsättningen</span></b> av <math> f(x) </math> <math>-</math> definieras<span style="color:black">:</span>
 +
 
 +
:::::<div class="border-div"> <math> \hat{f}(x) \, = \, \begin{cases} \displaystyle {2\,x^2 + 6\,x \over x^2 - 9} & \mbox{om } x \neq -3  \\
 +
                                                                                                                    \\
 +
                                                                                                  1              & \mbox{om } x  =  -3
 +
                              \end{cases}</math> </div>
 +
 
 +
Denna definition är uppdelad i två olika fall: &nbsp;&nbsp;&nbsp;&nbsp; För alla <math> \, x \neq -3\, </math> definieras <math> \, \hat{f}(x) \, </math> enligt det rationella uttrycket för <math> \, f(x)\, </math>.
 +
 
 +
:::::::::::::För <math> \, x = -3 \, </math> får <math> \hat{f}(x) \, </math> värdet <math> 1 </math>, dvs <math> \hat{f}(-3) = 1 </math>.
 +
 
 +
<math>\hat{f}(x) \, </math> är både algebraiskt och grafiskt (se exemplet ovan) identisk med den förkortade form vi hade fått tidigare<span style="color:black">:</span>
 +
 
 +
::::::::<math> \hat{f}(x) \, = \, g\,(x) \, = \, {2 \, x \over x - 3} </math>
 +
 
 +
I praktiskt beräkningssammanhang, t.ex. när man ritar grafen, föredrar man förstås denna enkla form.
 +
 
 +
Nackdelen med den är bara att den inte längre innehåller något spår av den ursprungliga funktionen <math> f(x)\, </math>, att den "gömmer" sina rötter. Man ser inte att den är en kontinuerlig fortsättning av <math> f(x) </math>.
 +
 
 +
Den andra faktorn <math> (x-3)\, </math> både i <math> f(x)</math>:s och <math> \, \hat{f}(x)</math>:s nämnare som inte kan förkortas ger upphov till den andra diskontinuiteten <math> \, x = 3 \, </math> som till skillnad från <math> \, x = -3\, </math> är en icke-hävbar diskontinuitet och inte kan "repareras" på något sätt. När <math> \, x\, </math> går mot <math> \, 3\, </math> går <math> f(x)\, </math> inte mot ett ändligt värde utan mot oändligheten, vilket syns i graferna till både <math> f(x)\, </math> och <math> \hat{f}(x) </math>. Denna "allvarliga" diskontinuitet finns även kvar i den kontinuerliga fortsättningen <math> \hat{f}(x) </math>.
 +
 
 +
Så <math> \hat{f}(x) \, </math> har endast en diskontinuitet kvar medan <math> f(x)\, </math> hade två diskontinuiteter.
 +
</div>
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
[[Matte:Copyrights|Copyright]] © 2019 [https://www.techpages.se <b><span style="color:blue">TechPages AB</span></b>]. All Rights Reserved.

Nuvarande version från 2 juni 2019 kl. 12.48

        <<  Förra avsnitt          Genomgång          Övningar          Fördjupning          Nästa avsnitt  >>      

     <<  Repetition: Tal i bråkform


Division med \( \, 0 \, \) är inom de reella talen inte definierad.

\( \quad \) Varför? \( \qquad\qquad\qquad \) Vad händer om man ändå dividerar med 0?


Rationella funktioner

En rationell funktion är ett rationellt uttryck som tilldelas en annan variabel, t.ex. \( \, y\).


Exempel 1

Det rationella uttrycket \( \, \displaystyle{\frac{1}{x}} \, \) tilldelas variabeln \( \, y \, \), vilket ger den rationella funktionen samt grafen:

\( \displaystyle y = {1 \over x} \)
          Praktisk forklaring.jpg
Funktionen är inte definierad för \( \; {\color{Red} {x = 0}} \).

Till skillnad från polynomfunktioners graf har denna graf två skilda grenar, uttryckt i matematiska termer:

En polynomfunktion är alltid kontinuerlig: Dess graf kan ritas utan att man lyfter pennan från papperet.

I grafen ovan måste vid \( x = 0\, \) pennan lyftas för att gå från grafens ena gren till den andra.

Dvs grafen är inte sammanhängande i \( x = 0\, \).

Man säger att funktionen är diskontinuerlig (icke-kontinuerlig) i \( \, x = 0 \).

Anledningen till denna diskontinuitet är att \( \; y = \) \( \displaystyle {1 \over x} \; \) inte är definierad för \( x = 0\, \).

När \( \, x \, \) närmar sig \( 0\, \) går \( y\, \) mot oändligheten, vilket kan inses både algebraiskt och grafiskt.

Man måste undanta \( x = 0\, \) från funktionens definitionsmängd:

Den rationella funktionen \( y = \) \( \displaystyle {1 \over x}\):s definitionsmängd är: \( \qquad \boxed{{\rm Alla}\quad x \quad {\rm med} \quad x \neq 0} \)


Matte 2:

En funktions definitionsmängd är mängden av alla \( \, x \, \) för vilka funktionen är definierad.


Diskontinuiteten för vissa \( \, x \, \) är något typiskt för alla rationella funktioner och

det är det som skiljer dem från polynomfunktioner som är definierade och kontinuerliga för alla \( x\, \).

Diskontinuiteten för vissa \( \, x\, \) innebär att det är bara några isolerade \( \, x\)-värden som en rationell funktion kan vara diskontinuerlig för.

Det finns även rationella funktioner som inte har några reella diskontinuiteter, dvs de är kontinuerliga för alla reella \( \, x\, \). Här följer ett exempel:


Exempel 2

En "snäll" rationell funktion samt graf utan reell diskontinuitet:

\( \displaystyle y_1 = {6\,x \over x^2 + 1} \)
          Rat fkt utan disk.jpg


Grafen visar inga diskontinuiteter.

Algebraiskt har funktionsuttryckets nämnare inga reella nollställen, dvs ekvationen

\( x^2 + 1 = 0\, \) saknar reell lösning. Den ger nämligen \( \, x^2 = -1 \). Och \( \, \sqrt{-1} \, \) är inget reellt tal.

Ekvationen har endast de komplexa lösningarna \( \, x_1 = i \, \) och \( \, x_2 = -i \).

Slutsats: Den rationella funktionen \( \, y_1\):s definitionsmängd är: \( \quad\;\; \boxed{{\rm Alla\;reella\;tal}\quad x} \)


Exempel 3

En liten ändring i \( \, y_1\):s nämnare från \( \, x^2 \, \bf{{\color{Red} +}} \, 1 \, \) till \( \, x^2 \, \bf{{\color{Red} -}} \, 1 \, \) resulterar i en annan funktion med ett annat beteende:

\( \displaystyle y_2 = {6\,x \over x^2 - 1} = {6\,x \over (x + 1) \cdot (x - 1)} \)
          Rat fkt med disk.jpg

Grafen är updelad i tre grenar och har två diskontinuiteter, dvs två ställen där den inte är kontinuerlig,

dvs inte sammanhängande: \( \, x\, = \, -1 \, \) och \( \, x\, = \, 1 \). När \( \, x\, \) närmar sig dessa två ställen går \( \, y_2\,\) mot oändligheten.

Algebraiskt har nämnaren i \( \, y_2 \, \) nollställena \( \, x = 1 \, \) och \( \, x = -1 \). Därför har \( \, y_2 \, \) diskontinuiteter i dessa punkter.

\( \Downarrow \)

Slutsats: Den rationella funktionen \( \, y_2\):s definitionsmängd är: \( \qquad \boxed{{\rm Alla}\quad x \quad {\rm med} \quad x \neq -1 \; {\rm och} \; x \neq 1} \)


Hävbara och icke-hävbara diskontinuiteter

Exempel

14f Förkort Diskont.jpg

Vi skriver de rationella uttrycken ovan som funktioner och ritar deras grafer för att besvara

Frågan:    Är det en funktion i två olika skepnader eller är det två olika funktioner?

\(\begin{align} f\,(x) & = {2\,x^2 + 6\,x \over x^2 - 9} = {2\,x\,{\color{Red} {(x + 3)}} \over {\color{Red} {(x + 3)}}\,(x - 3)} \\ g\,(x) & = {2\,x \over x - 3} \end{align} \)

Svaret:    \( f(x) \, \) och \( \, g\,(x) \, \) är två olika funktioner eftersom

deras definitionsmängder är olika:

\( f(x)\):s definitionsmängd är: \( \boxed{{\rm Alla} \, x \, {\rm med} \, x \neq -3 \, {\rm och} \, x \neq 3} \)

\( g\,(x)\):s definitionsmängd är: \( \boxed{{\rm Alla} \, x \, {\rm med} \, x \neq 3} \)

Havbar ickehavbar disk.jpg

OBS!        Likheten \( \, {2\,x\,{\color{Red} {(x + 3)}} \over {\color{Red} {(x + 3)}}\,(x - 3)} \, = \, {2\,x \over x - 3} \, \) gäller inte för alla \( \, x \, \) utan endast för alla \( \, x \not= -3 \). Anledningen är:

Förkortningen med \( \, {\color{Red} {(x + 3)}} \, \) är endast korrekt om \( \, x \not= -3 \) eftersom den innebär division med \( \, {\color{Red} {(x + 3)}} \, \) som är \( \, 0\,\) när \( \, x = -3\, \).
Se upp för division med \( \, 0 \,\) i uttryck, för den är oftast gömd. Läs: Vad händer om man ändå dividerar med 0 ?.

Graferna lurar oss: Med blotta ögat ser man knappast någon skillnad mellan \( f(x) \, \) och \( \, g\,(x) \). Men om du förstorar \( f(x)\):s graf kan du se i den ett "hål" eller en "lucka" i \( \, x = -3 \), vilket beror på att \( f(x) \, \) inte är definierad där. Grafen "hoppar" över \( \, x = -3 \, \) så att säga. Men till skillnad från \( \, x = 3 \, \) går funktionen inte mot oändligheten i den närmaste omgivningen av \( \, x = -3 \). Anledningen till det är att \( \, x = -3 \, \) är en hävbar diskontinuitet, till skillnad från \( \, x = 3 \, \) som är en icke-hävbar diskontinuitet.


\( x = -3 \) kallas för en hävbar diskontinuitet eftersom \( (x+3) \) kan förkortas bort i \( f(x) \) och försvinner då från nämnaren.

\( \, x = 3 \, \) kallas för en icke-hävbar diskontinuitet eftersom \( \, (x-3) \, \) finns kvar i nämnaren av \( f(x) \).



Men hur häver man en hävbar diskontinuitet?


Kontinuerlig fortsättning

Hävbara diskontinuiteter är "snälla". Funktioner med hävbara diskontinuiteter kan "repareras":

Det gör man genom att definiera en ny funktion som inte längre har den ursprungliga funktionens hävbara diskontinuitet, men är annars identisk med den.

I exemplet ovan skulle man kunna t.ex. komplettera funktionen \( f(x)\, \):s definition med ett värde för \( \, x = -3 \, \) som gör att den nya funktionen blir kontinuerlig i sin omgivning. Man får fram detta värde genom att beräkna värdet av \( \, \displaystyle {g\,(x) = {2\,x \over x - 3}} \, \) för \( \, x = -3 \):

\[ g\,(-3) = {2 \cdot (-3) \over -3 - 3} = {-6 \over -6} = 1 \]

Värdet \( \, 1 \, \) läggs till i den nya funktionen för \( \, x = -3 \). Så blir den kontinuerliga fortsättningen en modifierad version av \( f(x) \) som består just av det här tillägget. För alla andra \( \, x \, \) är den nya funktionen identisk med den gamla \( f(x) \).

Så här kan den nya funktionen \(-\) kallad den kontinuerliga fortsättningen av \( f(x) \) \(-\) definieras:

\( \hat{f}(x) \, = \, \begin{cases} \displaystyle {2\,x^2 + 6\,x \over x^2 - 9} & \mbox{om } x \neq -3 \\ \\ 1 & \mbox{om } x = -3 \end{cases}\)

Denna definition är uppdelad i två olika fall:      För alla \( \, x \neq -3\, \) definieras \( \, \hat{f}(x) \, \) enligt det rationella uttrycket för \( \, f(x)\, \).

För \( \, x = -3 \, \) får \( \hat{f}(x) \, \) värdet \( 1 \), dvs \( \hat{f}(-3) = 1 \).

\(\hat{f}(x) \, \) är både algebraiskt och grafiskt (se exemplet ovan) identisk med den förkortade form vi hade fått tidigare:

\[ \hat{f}(x) \, = \, g\,(x) \, = \, {2 \, x \over x - 3} \]

I praktiskt beräkningssammanhang, t.ex. när man ritar grafen, föredrar man förstås denna enkla form.

Nackdelen med den är bara att den inte längre innehåller något spår av den ursprungliga funktionen \( f(x)\, \), att den "gömmer" sina rötter. Man ser inte att den är en kontinuerlig fortsättning av \( f(x) \).

Den andra faktorn \( (x-3)\, \) både i \( f(x)\):s och \( \, \hat{f}(x)\):s nämnare som inte kan förkortas ger upphov till den andra diskontinuiteten \( \, x = 3 \, \) som till skillnad från \( \, x = -3\, \) är en icke-hävbar diskontinuitet och inte kan "repareras" på något sätt. När \( \, x\, \) går mot \( \, 3\, \) går \( f(x)\, \) inte mot ett ändligt värde utan mot oändligheten, vilket syns i graferna till både \( f(x)\, \) och \( \hat{f}(x) \). Denna "allvarliga" diskontinuitet finns även kvar i den kontinuerliga fortsättningen \( \hat{f}(x) \).

Så \( \hat{f}(x) \, \) har endast en diskontinuitet kvar medan \( f(x)\, \) hade två diskontinuiteter.





Copyright © 2019 TechPages AB. All Rights Reserved.