Skillnad mellan versioner av "1.3 Rationella uttryck"

Från Mathonline
Hoppa till: navigering, sök
m (Vad är ett rationellt uttryck?)
m
 
(565 mellanliggande versioner av samma användare visas inte)
Rad 1: Rad 1:
 +
__NOTOC__
 
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%"
 
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%"
 
| style="border-bottom:1px solid #797979" width="5px" |  
 
| style="border-bottom:1px solid #797979" width="5px" |  
{{Not selected tab|[[Repetition Bråkräkning från Matte 1|Repetition Bråkräkning]]}}
+
{{Not selected tab|[[1.2 Faktorisering av polynom| <<&nbsp;&nbsp;Förra avsnitt]]}}
{{Selected tab|[[1.3 Rationella uttryck|Teori]]}}
+
{{Selected tab|[[1.3 Rationella uttryck|Genomgång]]}}
 
{{Not selected tab|[[1.3 Övningar till Rationella uttryck|Övningar]]}}
 
{{Not selected tab|[[1.3 Övningar till Rationella uttryck|Övningar]]}}
 
{{Not selected tab|[[1.3 Fördjupning till Rationella uttryck|Fördjupning]]}}
 
{{Not selected tab|[[1.3 Fördjupning till Rationella uttryck|Fördjupning]]}}
{{Not selected tab|[[1.3 Internetlänkar till Rationella uttryck|Internetlänkar]]}}
+
{{Not selected tab|[[1.4 Talet e och den naturliga logaritmen|Nästa avsnitt&nbsp;&nbsp;>> ]]}}
 
| style="border-bottom:1px solid #797979"  width="100%"| &nbsp;
 
| style="border-bottom:1px solid #797979"  width="100%"| &nbsp;
 
|}
 
|}
 +
[[1.3 Repetition: Tal i bråkform|&nbsp;&nbsp;&nbsp;&nbsp; <<&nbsp;&nbsp;Repetition: Tal i bråkform]]
  
 +
<!-- [[Media: Lektion 6 Rationella uttryck Rutab.pdf|<b><span style="color:blue">Lektion 6 Rationella uttryck</span></b>]]
  
 +
[[Media: Lektion 7 Rationella uttryck Ruta.pdf|<b><span style="color:blue">Lektion 7 Rationella uttryck</span></b>]]
  
[[Media: Lektion 8 Rationella uttryck 2.pdf|Lektion 8 Rationella uttryck II]]
+
[[Media: Lektion 8 Rationella uttryck Ruta.pdf|<b><span style="color:blue">Lektion 8 Rationella uttryck: Fördjupning</span></b>]]
 +
-->
 +
= <b><span style="color:#931136">Exempel på rationella uttryck</span></b> =
  
__TOC__
+
<div class="border-divblue">
 +
::<math> \frac{1}{x} \qquad\qquad {5 \over 2\,x} \qquad\qquad {7\,x \over x+2} \qquad\quad {6\,x \over x^2 - 1} \qquad\quad {x^3 \, + \, 3\,x^2 \, - \, 8\,x - \, 1 \over 4\,x^2 \, - \, 5\,x \, + \, 1} \quad  </math>
 +
</div>
  
== Vad är ett rationellt uttryck? ==
+
<big>
 +
Ett <b><span style="color:red">rationellt uttryck</span></b> är kvoten (resultatet av division) mellan två [[1.1 Polynom|<b><span style="color:blue">polynom</span></b>]].
  
Ett <strong><span style="color:red">heltal</span></strong> är ett tal ur mängden <math> \{\dots, -3, -2, -1, \,0,\, 1,\, 2,\, 3, \dots\} </math> dvs alla negativa heltal, noll och alla positiva heltal.
+
I rationella uttryck får nämnaren inte bli <math> \, 0\, </math>, t.ex. får i<span style="color:black">:</span>
  
Ett <strong><span style="color:red">rationellt tal</span></strong> är kvoten (resultatet av division) mellan två heltal med undantaget <math> 0\, </math> i nämnaren, t.ex.:
+
:::::::<math> 6\,x \over x^2 - 1 </math>
  
:::::::::<math> 3 \over 4 </math>
+
nämnaren <math> x^2 - 1\, </math> inte bli <math> \, 0 </math>, för division med <math> \, 0 </math> är inte definierad. Läs: [[1.3_Fördjupning_till_Rationella_uttryck#Varf.C3.B6r_.C3.A4r_division_med_0_inte_definierad.3F|<b><span style="color:blue">Varför är division med 0 inte definierad?</span></b>]]
  
Rationellt tal är synonym till tal i bråkform. <math> 0\, </math> får inte förekomma i nämnaren, för division med <math> 0\, </math> ger inget tal och är därför inte definierad.
+
Detta innebär att <math> \, x\, </math> varken får vara <math> \, 1\, </math> eller <math> \, -1\, </math>, för då blir polynomet <math> \, x^2 - 1\, </math>:s värde <math> \, 0 </math>. Och eftersom <math> \, x^2 - 1\, </math> står i nämnaren, blir hela uttryckets värde för <math> \, x = 1 \, </math> och <math> \, x = -1 \, </math> inte definierat. Man säger:
 +
</big>
  
Ett <strong><span style="color:red">rationellt uttryck</span></strong> är kvoten mellan två [[1.2 Polynom|polynom]], t.ex.:
+
<div class="ovnE">
 +
Det&nbsp;rationella&nbsp;uttrycket&nbsp;<math> \, \displaystyle \frac{6\,x}{x^2 - 1} \, </math>&nbsp;är&nbsp;definierat&nbsp;för&nbsp;alla&nbsp;<math> x\, </math>&nbsp;utom&nbsp;för&nbsp;<math> \, x = 1 \, </math>&nbsp;och&nbsp;<math> \, x = -1 </math>.
  
::::::::<math> 6\,x \over x^2 - 1 </math>
+
Uttryckets <b><span style="color:red">definitionsmängd</span></b> är<span style="color:black">:</span> <math> \qquad {\rm Alla}\quad x \quad {\rm med} \quad x \neq 1 \quad {\rm och} \quad x \neq -1 </math>
 +
</div>
  
Analogin mellan heltal och polynom å ena och rationellt tal och rationellt uttryck å andra sidan kommer att gå igenom som en röd tråd i detta avsnitt.
+
<big>
 +
Ett uttrycks definitionsmängd är mängden av alla <math> \, x \, </math> för vilka uttrycket är definierat, jfr. med en funktions definitionsmängd.  
 +
</big>
  
Nämnaren <math> x^2 - 1\, </math> får inte vara <math> 0\, </math>. Detta innebär att <math> x\, </math> varken får vara <math> 1\, </math> eller <math> -1\, </math>, för då blir polynomet <math> x^2 - 1\, </math>:s värde, <math> 0\, </math> och därmed inte definierat.
 
  
Följaktligen blir även hela uttryckets värde inte definierat. Man säger, det rationella uttrycket ovan är definierat för alla <math> x\, </math> utom för <math> x = 1\, </math> och <math> x = -1\, </math>. Uttryckets definitionsmängd är:
+
== <b><span style="color:#931136">Analogi mellan heltal och polynom samt mellan bråk och rationella uttryck</span></b> ==
  
::::::::<math> {\rm Alla}\,x \, , x \neq 1, \, x \neq -1 </math>
+
<big>
 +
Repetera [http://34.248.89.132:1800/index.php/1.1_Om_tal#Olika_typer_av_tal<b><span style="color:blue">Olika typer av tal</span></b>] från Matte 1.
  
Man utvidgar talbegreppet från heltal till bråktal för att kunna ange t.ex. ett tal som löser ekvationen:
+
Ett <b><span style="color:red">rationellt tal</span></b> är ett tal i bråkform, dvs kvoten (resultatet av division) mellan två heltal med undantaget <math> 0\, </math> i nämnaren, t.ex. <math> \; \displaystyle \frac{3}{4} \; </math>.
  
:::::::<math>\begin{align} 4 \cdot x & = 3          \\
+
Noll får inte förekomma i nämnaren, för division med <math> \, 0\, </math>, t.ex. <math> \, \displaystyle \frac{3}{0} \, </math> är inte definierad.
                                        x & = {3 \over 4} \\
+
        \end{align} </math>
+
  
Det sökta talet blir då just det rationella tal (bråk) ovan som inte längre är ett heltal.
+
Följande analogi (motsvarighet) råder mellan heltal och polynom å ena och bråk och rationellt uttryck å andra sidan:
  
På liknande sätt utvidgar man polynombegreppet till rationella uttryck för att kunna ange t.ex. ett uttryck R(x) som löser ekvationen:
+
Heltal motsvarar polynom och rationella tal motsvarar rationella uttryck. De senaste två är kvoter av de första två. I de senaste två får nämnaren inte bli <math> \, 0 </math>.
  
:::<math>\begin{align} (x^2 - 1)\cdot R(x) & = 6\,x                \\
+
De senaste två är utvidgningar av de första två som har kommit till genom division. Inte nog med det:  
                                            R(x) & = {6\,x \over x^2 - 1} \\
+
        \end{align} </math>
+
  
Det sökta uttrycket R(x) blir då just det rationella uttryck ovan som inte längre är ett polynom. Till skillnad från addition, subtraktion och multiplikation av två (eller flera) polynom som alltid ger ett polynom, ger division av två polynom i regel inget polynom utan ett rationellt uttryck, precis som division av två heltal i regel inte ger ett heltal, utan ett rationellt tal (bråk).
+
När vi börjar <b><span style="color:red">räkna</span></b> visar det sig att räknereglerna för rationella uttryck är en naturlig fortsättning på de regler som gäller för bråktal, fast på ett högre plan. Detta gäller inte bara <b><span style="color:red">de fyra räknesätten</span></b> utan även <b><span style="color:red">förkortning</span></b> och <b><span style="color:red">förlängning</span></b>.
  
Övergången från polynom till rationella uttryck är i många avseenden jämförbar med övergången från heltal till rationella tal. Analogin mellan heltal och rationella tal å ena sidan och polynom och rationella uttryck å andra sidan är inte begränsad till det här exemplet utan går mycket längre. Den är både intressant ur teoretiskt perspektiv och nyttig ur praktsik synvinkel. Vi kommer att se att den hjälper oss att räkna med rationella uttryck.
+
I själva verket är räknereglerna för rationella uttryck generaliseringar av bråkräkningens regler. Samma principer som gäller för bråkräkning, kan användas för räkning med rationella uttryck. Därför: &nbsp;&nbsp;&nbsp;<b>Repetera [[1.3 Repetition: Tal i bråkform|<span style="color:blue">bråkräkning</span>]] från Matte 1&nbsp;&nbsp;&nbsp;.</b>
 +
</big>
  
== Att räkna med rationella uttryck ==
 
  
Avsikten med detta avsnitt är inte att vi ska lära oss räkna med bråktal, för det har vi (förhoppningsvis!) redan gjort i Matte A-kursen. Utan avsikten är att inse att räknereglerna för rationella uttryck är en naturlig fortsättning av de regler som gäller för räkning med bråktal, fast på ett högre plan.
+
= <b><span style="color:#931136">Addition och subtraktion av rationella uttryck</span></b> =
  
Analogin mellan heltal och rationella tal å ena sidan och polynom och rationella uttryck å andra sidan medför bl.a. att räknereglerna för rationella uttryck var en naturlig fortsättning av de regler som gällde för räkning med bråktal. Därför kommer vi nu, när vi går igenom dessa räkneregler, alltid inleda med en repetition av regler som gäller för räkning med bråktal för att sedan generalisera och använda samma principer på räkning med rationella uttryck.
+
<div class="ovnE">
 +
=== <span style="color:#931136">Exempel 1</span> ===
 +
<big>
 +
Förenkla uttrycket <math> \; \displaystyle \frac{5}{2\,x} \, - \, \frac{4}{3\,x} \; </math> så långt som möjligt.  
  
=== Addition & subtraktion av rationella uttryck ===
+
::::::<math> \;\, {5 \over 2\,x} \, - \, {4 \over 3\,x} \; = \; {\;5 \;\,\cdot {\color{Red} {3}} \over 2\,x \cdot {\color{Red} {3}}} \, - \, {\;4 \;\,\cdot {\color{Red} {2}} \over 3\,x \cdot {\color{Red} {2}}} \; = \; {\;15 \over 6\,x} \, - \, {\;8 \over 6\,x} \; = \; {\;15 - 8 \over 6\,x} \; = \; {7 \over 6\,x} </math>
 +
</big></div>
  
Vi kan nu använda samma principer för att addera och subtrahera rationella uttryck:
 
  
===== Exempel 3 =====
+
<div class="ovnC">
 +
=== <span style="color:#931136">Exempel 2</span> ===
 +
<big>
 +
Förenkla uttrycket <math> \; \displaystyle \frac{7}{12\,x} \, - \, \frac{3}{8\,x^2} \, + \, \frac{7}{24\,x^3} \; </math> så långt som möjligt.
  
Förenkla följande uttryck så långt som möjligt: <math> {5 \over 2\,x} \, - \, {4 \over 3\,x} </math>
+
::::::<math> \;\, {7 \over 12\,x} \, - \, {3 \over 8\,x^2} \, + \, {7 \over 24\,x^3} \; = \; {\;\;7 \;\;\,\cdot {\color{Red} {2\,x^2}} \over 12\,x \cdot {\color{Red} {2\,x^2}}} \, - \, {\;\,3 \;\;\,\cdot {\color{Red} {3\,x}} \over 8\,x^2 \cdot {\color{Red} {3\,x}}} \, + \, {7 \over 24\,x^3} \; = \;  </math>
  
<math> {5 \over 2\,x} \, - \, {4 \over 3\,x} \; = \; {\;5 \;\,\cdot {\color{Red} 3\,x} \over 2\,x \cdot {\color{Red} 3\,x}} \, - \, {\;4 \;\,\cdot {\color{Red} 2\,x} \over 3\,x \cdot {\color{Red} 2\,x}} \; = \; {\;15\,x \over 6\,x^2} \, - \, {\;8\,x \over 6\,x^2} \; = \; {\;15\,x - 8\,x \over 6\,x^2} \; = \; {7\,x \over 6\,x^2} \; = \; {7 \over 6\,x} </math>
+
::::::<math> \;\, = \; {14\,x^2 \over 24\,x^3} \, - \, {9\,x \over 24\,x^3} \, + \, {7 \over 24\,x^3} \; = \; {14\,x^2 - 9\,x + 7 \over 24\,x^3} </math>
 +
</big></div>
  
  
===== Exempel 4 =====
+
<big>
 +
<b>Hjälpsats:</b> <math> \qquad\quad \boxed{a\,-\,b \; = \; -\,(b\,-\,a)} </math>
  
Förenkla följande uttryck så långt som möjligt: <math> {7 \over 12\,x} \, - \, {3 \over 8\,x^2} \, + \, {7 \over 24\,x^3} </math>  
+
<b>Bevis:</b> <math> \qquad\qquad\;\;\, a\,-\,b \; = \; a\,+\,(-\,b) \; = \; (-\,b)\,+\,a \; = \; -\,b\,+\,a \; = \; -\,(b\,-\,a) </math>
  
<math> {7 \over 12\,x} \, - \, {3 \over 8\,x^2} \, + \, {7 \over 24\,x^3} \; = \; {\;\;7 \;\;\,\cdot {\color{Red} 2\,x^2} \over 12\,x \cdot {\color{Red} 2\,x^2}} \, - \, {\;\,3 \;\;\,\cdot {\color{Red} 3\,x} \over 8\,x^2 \cdot {\color{Red} 3\,x}} \, + \, {7 \over 24\,x^3} \; = \; {14\,x^2 \over 24\,x^3} \, - \, {9\,x \over 24\,x^3} \, + \, {7 \over 24\,x^3} \; = \; {14\,x^2 - 9\,x + 7 \over 24\,x^3} </math>
+
Dvs: Kastar man om ordningen i en subtraktion, måste minus sättas framför det hela.
 +
</big>
  
  
===== Exempel 5 =====
+
<div class="ovnA">
 +
=== <span style="color:#931136">Exempel 3</span> ===
 +
<big>
 +
Förenkla uttrycket <math> \; \displaystyle \frac{2}{a-b} \, - \, \frac{1}{b-a} \; </math> så långt som möjligt.
  
Förenkla följande uttryck så långt som möjligt: <math> {2 \over a-b} \, - \, {1 \over b-a} </math>  
+
::::::<math> \;\, {2 \over a-b} \, - \, {1 \over b-a} \; = \; {2 \over a-b} \, - \, {1 \over - \, (a-b)} \; = \; {2 \over a-b} \, + \, {1 \over a-b} \; = \; {2 \, + \, 1 \over a-b} \; = \; {3 \over a-b} </math>
 +
</big></div>
  
<math> {2 \over a-b} \, - \, {1 \over b-a} \; = \; {2 \over a-b} \, - \, {1 \over - \, (a-b)} \; = \; {2 \over a-b} \, + \, {1 \over a-b} \; = \; {2 \, + \, 1 \over a-b} \; = \; {3 \over a-b} </math>
 
  
 +
== <span style="color:#931136">Repetition: Kvadreringsreglerna och konjugatregeln</span> ==
 +
<div class="border-divblue">
 +
<math>\begin{align} {\rm 1:a \,\, kvadreringsregeln} \qquad          (a+b)^2 & = a^2 + 2\,a\,b + b^2  \;\; \\
 +
                      {\rm 2:a \,\, kvadreringsregeln} \qquad          (a-b)^2 & = a^2 - 2\,a\,b + b^2      \\
 +
                      {\rm \,Konjugatregeln}          \qquad (a+b) \cdot (a-b) & = a^2 - b^2
 +
  \end{align}</math>
 +
</div>
 +
<big>
 +
<b><span style="color:red">OBS!</span></b>&nbsp;&nbsp;&nbsp;Användningen av reglerna ovan <b><span style="color:red">baklänges</span></b> innebär <b><span style="color:red">faktorisering</span></b>.
 +
</big>
  
===== Exempel 6 =====
 
  
Förenkla följande uttryck så långt som möjligt: <math> {2 \over x^2-4} \, + \, {1 \over 2\,x - x^2} </math>
+
<div class="ovnE">
 +
=== <span style="color:#931136">Exempel 4</span> ===
 +
<big>
 +
Förenkla uttrycket <big><big><math> \; {2 \over x^2-4} \, + \, {1 \over 2\,x - x^2} \; </math></big></big> så långt som möjligt.
  
<math> {2 \over x^2-4} \, + \, {1 \over 2\,x - x^2} \; = \; {2 \over (x+2)\cdot(x-2)} \, + \, {1 \over (2-x)\cdot x} \; = \; {2 \over (x+2)\cdot(x-2)} \, + \, {1 \, \over - \, (x-2)\cdot x} \; = \; </math>
+
Redan i första steget används konjugatregeln baklänges för att faktorisera den första termens nämnare:
  
 +
:<math> {2 \over x^2-4} \, + \, {1 \over 2\,x - x^2} \; = \; {2 \over (x+2)\cdot(x-2)} \, + \, {1 \over (2-x)\cdot x} \; = \; {2 \over (x+2)\cdot(x-2)} \, + \, {1 \, \over - \, (x-2)\cdot x} \; = \; </math>
  
<math> = \; {2 \over (x+2)\cdot(x-2)} \, + \, {-1 \over (x-2)\cdot x} \; = \; {\qquad\quad 2 \qquad\quad\;\cdot {\color{Red} x} \over (x+2)\cdot(x-2) \cdot {\color{Red} x}} \; + \; {{\color{Red} (x+2)}\cdot \quad\, (-1) \quad\, \over {\color{Red} (x+2)}\cdot (x-2)\cdot x} \; = \; </math>
+
:<math> = \; {2 \over (x+2)\cdot(x-2)} \, - \, {1 \over (x-2)\cdot x} \; = \; {\qquad\quad 2 \qquad\quad\;\cdot {\color{Red} x} \over (x+2)\cdot(x-2) \cdot {\color{Red} x}} \; - \; {{\color{Red} {(x+2)}}\quad\cdot \quad\, 1 \quad\;\;\, \over {\color{Red} {(x+2)}}\cdot (x-2)\cdot x} \; = \; </math>
  
 +
:<math> = \; {2\,x \; - \; (x+2) \over (x+2) \cdot (x-2)\cdot x} \; = \; {2\,x - x - 2 \over (x+2) \cdot (x-2)\cdot x} \; = \; {x - 2 \over (x+2) \cdot (x-2)\cdot x} \; = \; {1 \over x \; (x+2)} </math>
 +
</big></div>
  
<math> = \; {2\,x \; + \; (x+2) \cdot (-1) \over (x+2) \cdot (x-2)\cdot x} \; = \; {2\,x \; + \; (-x-2) \over (x+2) \cdot (x-2)\cdot x} \; = \; {2\,x - x - 2 \over (x+2) \cdot (x-2)\cdot x} \; = </math>
 
  
 +
= <b><span style="color:#931136">Multiplikation och division av rationella uttryck</span></b> =
  
<math> = \; {x - 2 \over (x+2) \cdot (x-2)\cdot x} \; = \; {1 \over x \; (x+2)} </math>
+
<big>
 +
Även här ska vi använda bråkräkningens regler för att multiplicera och dividera rationella uttryck:
 +
</big>
  
 +
<div class="ovnC">
 +
=== <span style="color:#931136">Exempel 1</span> ===
  
 +
<big>
 +
Förenkla uttrycket <math> \; \displaystyle \frac{15}{x^2} \cdot \frac{x}{3} </math>
  
 +
::::::<math> \;\, {15 \over x^2} \cdot {x \over 3} \; = \; {15 \cdot x \over x^2 \cdot 3} \; =\; {{\color{Red} 3} \cdot 5 \cdot {\color{Blue} x} \over {\color{Blue} x} \cdot x \cdot {\color{Red} 3}} \; = \; {5 \over x} </math>
 +
</big></div>
  
  
[[Matte:Copyrights|Copyright]] © 2011-2014 Taifun Alishenas. All Rights Reserved.
+
<div class="ovnA">
 +
=== <span style="color:#931136">Exempel 2</span> ===
 +
 
 +
<big>
 +
Förenkla uttrycket <math> \; \displaystyle \frac{5\,x^2}{12} \cdot \frac{3}{20\,x} </math>
 +
 
 +
::::::<math> \;\, {5\,x^2 \over 12} \cdot {3 \over 20\,x} \; = \; {5\,x^2 \cdot 3 \over 12 \cdot 20\,x} \; =\; {{\color{Blue} 5 \cdot x} \cdot x \cdot {\color{Red} 3} \over {\color{Red} 3} \cdot 4 \cdot 4 \cdot {\color{Blue} 5 \cdot x}} \; = \; {x \over 16} </math>
 +
</big></div>
 +
 
 +
 
 +
<div class="ovnE">
 +
=== <span style="color:#931136">Exempel 3</span> ===
 +
 
 +
<big>
 +
Förenkla uttrycket <math> \; \displaystyle \frac{x}{x+3} \cdot \frac{6\,x+18}{6\,x} \; </math> så långt som möjligt.
 +
 
 +
<b><span style="color:red">OBS! Vanligt fel:</span></b> <math> \; \displaystyle{{x \over x+3} \cdot {{\color{Red} {6\,x}}+18 \over {\color{Red} {6\,x}}} \; = \; {x \over x+3} \cdot 18 \; = \; {x \cdot 18 \over x+3} \; =\; {18\,x \over x+3}} </math>
 +
 
 +
 
 +
<b><span style="color:red">Korrekt lösning:</span></b> <math> \;\, \displaystyle{{x \over x+3} \cdot {6\,x+18 \over 6\,x} \; = \;{x \over x+3} \cdot {\color{Red} 6 \cdot (x+3) \over {\color{Red} 6} \cdot x} \; = \; {x \cdot (x+3) \over (x+3) \cdot x} \; = \; 1} </math>
 +
 
 +
<b><span style="color:red">Felets förklaring</span></b>:
 +
 
 +
Låt oss i uttrycket <math> \, \displaystyle{{\color{Red} {6\,x}}+18 \over {\color{Red} {6\,x}}} \, </math> anta <math> \, x = 1\, </math>.
 +
 
 +
Felaktig "förkortning" ger <math> \, \displaystyle{{\color{Red} 6}+18 \over {\color{Red} 6}} </math> <math> = 18 \, </math>.
 +
 
 +
Rätt svar är <math> \, \displaystyle{{6+18 \over 6} = {24 \over 6}} = 4 \, </math>.
 +
 
 +
Slutsats:
 +
 
 +
Det är fel att "förkorta" uttrycket <math> \; \displaystyle{{\color{Red} {6\,x}}+18 \over {\color{Red} {6\,x}}} \, \; </math> med <math> \; {\color{Red} {6\,x}} \; </math> därför att <math> \; {\color{Red} {6\,x}}+18 \; </math> är en summa.
 +
 
 +
Endast om täljaren och nämnaren är produkter kan gemensamma <b><span style="color:red">faktorer</span></b> förkortas.
 +
 
 +
Korrekt är att <b><span style="color:red">faktorisera</span></b> <math> \, 6\,x+18 \, </math> innan vi kan förkorta<span style="color:black"></span>. Det gör vi genom att bryta ut <math> {\color{Red} 6} \, </math> i täljaren:
 +
 
 +
::::::<math> {6\,x+18 \over 6\,x} \; =\; {{\color{Red} 6} \cdot (x+3) \over {\color{Red} 6} \cdot x} \; =\; {x+3 \over x} </math>
 +
 
 +
Nu får vi också rätt svar om vi i uttrycket ovan sätter in <math> \, x = 1 </math><span style="color:black">:</span> <math> \quad \displaystyle{{1+3 \over 1} \, = \, 4} \quad </math>.
 +
</big></div>
 +
 
 +
 
 +
<div class="ovnC">
 +
=== <span style="color:#931136">Exempel 4</span> ===
 +
 
 +
<big>
 +
[[Image: Ex Rationell uttryck Div.jpg]]
 +
 
 +
I första steget har den [[1.3_Rationella_uttryck#Repetition:_Kvadreringsreglerna_och_konjugatregeln|<b><span style="color:blue">2:a kvadreringsregeln</span></b>]] använts  baklänges för att faktorisera 2:a gradspolynomet<span style="color:black">:</span> <math> \; x^2 - 2\,x + 1 = (x-1)^2 \, </math> för att sedan kunna förkorta med <math> (x-1)\, </math>.
 +
</big></div>
 +
 
 +
 
 +
<div class="ovnA">
 +
=== <span style="color:#931136">Exempel 5</span> ===
 +
 
 +
<big>
 +
Förenkla uttrycket <math> \; \displaystyle \left(\frac{x^2 - 8\,x + 16}{y^3}\right)\, \Big / \,\left({x - 4 \over y^2}\right) \,\, \; </math> så långt som möjligt.
 +
 
 +
:<math> \left({x^2 - 8\,x + 16 \over y^3}\right)\, \Bigg / \,\left({x - 4 \over y^2}\right) \, = \, \left({x^2 - 8\,x + 16 \over y^3}\right)\, \cdot  \,\left({y^2 \over x - 4}\right) \, = \, </math>
 +
 
 +
:<math> \, = \, {(x^2 - 8\,x + 16) \cdot y^2 \over  y^3 \cdot (x - 4)} \, = \, \left\{ {\rm 2\!:\!a\;kvadreringsregeln\;baklänges\!:} \;\, x^2 - 8\,x + 16 = (x-4)^2 \right\} \, = \, </math>
 +
 
 +
:<math> \, = \, {(x-4)^2 \cdot y^2 \over  y^3 \cdot (x - 4)} \, = \, {(x-4) \cdot {\color{Red} {(x-4)}} \cdot {\color{Red} y} \cdot {\color{Red} y} \over y \cdot {\color{Red} y} \cdot {\color{Red} y} \cdot {\color{Red} {(x - 4)}}} \, = {x-4 \over y} </math>
 +
</big></div>
 +
 
 +
 
 +
== Internetlänkar ==
 +
 
 +
http://www03.edu.fi/svenska/laromedel/matematik/nollkurs/pass6.html
 +
 
 +
http://tutorial.math.lamar.edu/Classes/Alg/RationalExpressions.aspx
 +
 
 +
http://www.youtube.com/watch?v=FZdt73khrxA&feature=channel
 +
 
 +
http://www.youtube.com/watch?v=hVIol-6vocY&feature=related
 +
</big>
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
[[Matte:Copyrights|Copyright]] © 2019 [https://www.techpages.se <b><span style="color:blue">TechPages AB</span></b>]. All Rights Reserved.

Nuvarande version från 10 december 2024 kl. 14.01

        <<  Förra avsnitt          Genomgång          Övningar          Fördjupning          Nästa avsnitt  >>      

     <<  Repetition: Tal i bråkform

Exempel på rationella uttryck

\[ \frac{1}{x} \qquad\qquad {5 \over 2\,x} \qquad\qquad {7\,x \over x+2} \qquad\quad {6\,x \over x^2 - 1} \qquad\quad {x^3 \, + \, 3\,x^2 \, - \, 8\,x - \, 1 \over 4\,x^2 \, - \, 5\,x \, + \, 1} \quad \]

Ett rationellt uttryck är kvoten (resultatet av division) mellan två polynom.

I rationella uttryck får nämnaren inte bli \( \, 0\, \), t.ex. får i:

\[ 6\,x \over x^2 - 1 \]

nämnaren \( x^2 - 1\, \) inte bli \( \, 0 \), för division med \( \, 0 \) är inte definierad. Läs: Varför är division med 0 inte definierad?

Detta innebär att \( \, x\, \) varken får vara \( \, 1\, \) eller \( \, -1\, \), för då blir polynomet \( \, x^2 - 1\, \):s värde \( \, 0 \). Och eftersom \( \, x^2 - 1\, \) står i nämnaren, blir hela uttryckets värde för \( \, x = 1 \, \) och \( \, x = -1 \, \) inte definierat. Man säger:

Det rationella uttrycket \( \, \displaystyle \frac{6\,x}{x^2 - 1} \, \) är definierat för alla \( x\, \) utom för \( \, x = 1 \, \) och \( \, x = -1 \).

Uttryckets definitionsmängd är: \( \qquad {\rm Alla}\quad x \quad {\rm med} \quad x \neq 1 \quad {\rm och} \quad x \neq -1 \)

Ett uttrycks definitionsmängd är mängden av alla \( \, x \, \) för vilka uttrycket är definierat, jfr. med en funktions definitionsmängd.


Analogi mellan heltal och polynom samt mellan bråk och rationella uttryck

Repetera Olika typer av tal från Matte 1.

Ett rationellt tal är ett tal i bråkform, dvs kvoten (resultatet av division) mellan två heltal med undantaget \( 0\, \) i nämnaren, t.ex. \( \; \displaystyle \frac{3}{4} \; \).

Noll får inte förekomma i nämnaren, för division med \( \, 0\, \), t.ex. \( \, \displaystyle \frac{3}{0} \, \) är inte definierad.

Följande analogi (motsvarighet) råder mellan heltal och polynom å ena och bråk och rationellt uttryck å andra sidan:

Heltal motsvarar polynom och rationella tal motsvarar rationella uttryck. De senaste två är kvoter av de första två. I de senaste två får nämnaren inte bli \( \, 0 \).

De senaste två är utvidgningar av de första två som har kommit till genom division. Inte nog med det:

När vi börjar räkna visar det sig att räknereglerna för rationella uttryck är en naturlig fortsättning på de regler som gäller för bråktal, fast på ett högre plan. Detta gäller inte bara de fyra räknesätten utan även förkortning och förlängning.

I själva verket är räknereglerna för rationella uttryck generaliseringar av bråkräkningens regler. Samma principer som gäller för bråkräkning, kan användas för räkning med rationella uttryck. Därför:    Repetera bråkräkning från Matte 1   .


Addition och subtraktion av rationella uttryck

Exempel 1

Förenkla uttrycket \( \; \displaystyle \frac{5}{2\,x} \, - \, \frac{4}{3\,x} \; \) så långt som möjligt.

\[ \;\, {5 \over 2\,x} \, - \, {4 \over 3\,x} \; = \; {\;5 \;\,\cdot {\color{Red} {3}} \over 2\,x \cdot {\color{Red} {3}}} \, - \, {\;4 \;\,\cdot {\color{Red} {2}} \over 3\,x \cdot {\color{Red} {2}}} \; = \; {\;15 \over 6\,x} \, - \, {\;8 \over 6\,x} \; = \; {\;15 - 8 \over 6\,x} \; = \; {7 \over 6\,x} \]


Exempel 2

Förenkla uttrycket \( \; \displaystyle \frac{7}{12\,x} \, - \, \frac{3}{8\,x^2} \, + \, \frac{7}{24\,x^3} \; \) så långt som möjligt.

\[ \;\, {7 \over 12\,x} \, - \, {3 \over 8\,x^2} \, + \, {7 \over 24\,x^3} \; = \; {\;\;7 \;\;\,\cdot {\color{Red} {2\,x^2}} \over 12\,x \cdot {\color{Red} {2\,x^2}}} \, - \, {\;\,3 \;\;\,\cdot {\color{Red} {3\,x}} \over 8\,x^2 \cdot {\color{Red} {3\,x}}} \, + \, {7 \over 24\,x^3} \; = \; \]
\[ \;\, = \; {14\,x^2 \over 24\,x^3} \, - \, {9\,x \over 24\,x^3} \, + \, {7 \over 24\,x^3} \; = \; {14\,x^2 - 9\,x + 7 \over 24\,x^3} \]


Hjälpsats: \( \qquad\quad \boxed{a\,-\,b \; = \; -\,(b\,-\,a)} \)

Bevis: \( \qquad\qquad\;\;\, a\,-\,b \; = \; a\,+\,(-\,b) \; = \; (-\,b)\,+\,a \; = \; -\,b\,+\,a \; = \; -\,(b\,-\,a) \)

Dvs: Kastar man om ordningen i en subtraktion, måste minus sättas framför det hela.


Exempel 3

Förenkla uttrycket \( \; \displaystyle \frac{2}{a-b} \, - \, \frac{1}{b-a} \; \) så långt som möjligt.

\[ \;\, {2 \over a-b} \, - \, {1 \over b-a} \; = \; {2 \over a-b} \, - \, {1 \over - \, (a-b)} \; = \; {2 \over a-b} \, + \, {1 \over a-b} \; = \; {2 \, + \, 1 \over a-b} \; = \; {3 \over a-b} \]


Repetition: Kvadreringsreglerna och konjugatregeln

\(\begin{align} {\rm 1:a \,\, kvadreringsregeln} \qquad (a+b)^2 & = a^2 + 2\,a\,b + b^2 \;\; \\ {\rm 2:a \,\, kvadreringsregeln} \qquad (a-b)^2 & = a^2 - 2\,a\,b + b^2 \\ {\rm \,Konjugatregeln} \qquad (a+b) \cdot (a-b) & = a^2 - b^2 \end{align}\)

OBS!   Användningen av reglerna ovan baklänges innebär faktorisering.


Exempel 4

Förenkla uttrycket \( \; {2 \over x^2-4} \, + \, {1 \over 2\,x - x^2} \; \) så långt som möjligt.

Redan i första steget används konjugatregeln baklänges för att faktorisera den första termens nämnare:

\[ {2 \over x^2-4} \, + \, {1 \over 2\,x - x^2} \; = \; {2 \over (x+2)\cdot(x-2)} \, + \, {1 \over (2-x)\cdot x} \; = \; {2 \over (x+2)\cdot(x-2)} \, + \, {1 \, \over - \, (x-2)\cdot x} \; = \; \]

\[ = \; {2 \over (x+2)\cdot(x-2)} \, - \, {1 \over (x-2)\cdot x} \; = \; {\qquad\quad 2 \qquad\quad\;\cdot {\color{Red} x} \over (x+2)\cdot(x-2) \cdot {\color{Red} x}} \; - \; {{\color{Red} {(x+2)}}\quad\cdot \quad\, 1 \quad\;\;\, \over {\color{Red} {(x+2)}}\cdot (x-2)\cdot x} \; = \; \]

\[ = \; {2\,x \; - \; (x+2) \over (x+2) \cdot (x-2)\cdot x} \; = \; {2\,x - x - 2 \over (x+2) \cdot (x-2)\cdot x} \; = \; {x - 2 \over (x+2) \cdot (x-2)\cdot x} \; = \; {1 \over x \; (x+2)} \]


Multiplikation och division av rationella uttryck

Även här ska vi använda bråkräkningens regler för att multiplicera och dividera rationella uttryck:

Exempel 1

Förenkla uttrycket \( \; \displaystyle \frac{15}{x^2} \cdot \frac{x}{3} \)

\[ \;\, {15 \over x^2} \cdot {x \over 3} \; = \; {15 \cdot x \over x^2 \cdot 3} \; =\; {{\color{Red} 3} \cdot 5 \cdot {\color{Blue} x} \over {\color{Blue} x} \cdot x \cdot {\color{Red} 3}} \; = \; {5 \over x} \]


Exempel 2

Förenkla uttrycket \( \; \displaystyle \frac{5\,x^2}{12} \cdot \frac{3}{20\,x} \)

\[ \;\, {5\,x^2 \over 12} \cdot {3 \over 20\,x} \; = \; {5\,x^2 \cdot 3 \over 12 \cdot 20\,x} \; =\; {{\color{Blue} 5 \cdot x} \cdot x \cdot {\color{Red} 3} \over {\color{Red} 3} \cdot 4 \cdot 4 \cdot {\color{Blue} 5 \cdot x}} \; = \; {x \over 16} \]


Exempel 3

Förenkla uttrycket \( \; \displaystyle \frac{x}{x+3} \cdot \frac{6\,x+18}{6\,x} \; \) så långt som möjligt.

OBS! Vanligt fel: \( \; \displaystyle{{x \over x+3} \cdot {{\color{Red} {6\,x}}+18 \over {\color{Red} {6\,x}}} \; = \; {x \over x+3} \cdot 18 \; = \; {x \cdot 18 \over x+3} \; =\; {18\,x \over x+3}} \)


Korrekt lösning: \( \;\, \displaystyle{{x \over x+3} \cdot {6\,x+18 \over 6\,x} \; = \;{x \over x+3} \cdot {\color{Red} 6 \cdot (x+3) \over {\color{Red} 6} \cdot x} \; = \; {x \cdot (x+3) \over (x+3) \cdot x} \; = \; 1} \)

Felets förklaring:

Låt oss i uttrycket \( \, \displaystyle{{\color{Red} {6\,x}}+18 \over {\color{Red} {6\,x}}} \, \) anta \( \, x = 1\, \).

Felaktig "förkortning" ger \( \, \displaystyle{{\color{Red} 6}+18 \over {\color{Red} 6}} \) \( = 18 \, \).

Rätt svar är \( \, \displaystyle{{6+18 \over 6} = {24 \over 6}} = 4 \, \).

Slutsats:

Det är fel att "förkorta" uttrycket \( \; \displaystyle{{\color{Red} {6\,x}}+18 \over {\color{Red} {6\,x}}} \, \; \) med \( \; {\color{Red} {6\,x}} \; \) därför att \( \; {\color{Red} {6\,x}}+18 \; \) är en summa.

Endast om täljaren och nämnaren är produkter kan gemensamma faktorer förkortas.

Korrekt är att faktorisera \( \, 6\,x+18 \, \) innan vi kan förkorta. Det gör vi genom att bryta ut \( {\color{Red} 6} \, \) i täljaren:

\[ {6\,x+18 \over 6\,x} \; =\; {{\color{Red} 6} \cdot (x+3) \over {\color{Red} 6} \cdot x} \; =\; {x+3 \over x} \]

Nu får vi också rätt svar om vi i uttrycket ovan sätter in \( \, x = 1 \): \( \quad \displaystyle{{1+3 \over 1} \, = \, 4} \quad \).


Exempel 4

Ex Rationell uttryck Div.jpg

I första steget har den 2:a kvadreringsregeln använts baklänges för att faktorisera 2:a gradspolynomet: \( \; x^2 - 2\,x + 1 = (x-1)^2 \, \) för att sedan kunna förkorta med \( (x-1)\, \).


Exempel 5

Förenkla uttrycket \( \; \displaystyle \left(\frac{x^2 - 8\,x + 16}{y^3}\right)\, \Big / \,\left({x - 4 \over y^2}\right) \,\, \; \) så långt som möjligt.

\[ \left({x^2 - 8\,x + 16 \over y^3}\right)\, \Bigg / \,\left({x - 4 \over y^2}\right) \, = \, \left({x^2 - 8\,x + 16 \over y^3}\right)\, \cdot \,\left({y^2 \over x - 4}\right) \, = \, \]

\[ \, = \, {(x^2 - 8\,x + 16) \cdot y^2 \over y^3 \cdot (x - 4)} \, = \, \left\{ {\rm 2\!:\!a\;kvadreringsregeln\;baklänges\!:} \;\, x^2 - 8\,x + 16 = (x-4)^2 \right\} \, = \, \]

\[ \, = \, {(x-4)^2 \cdot y^2 \over y^3 \cdot (x - 4)} \, = \, {(x-4) \cdot {\color{Red} {(x-4)}} \cdot {\color{Red} y} \cdot {\color{Red} y} \over y \cdot {\color{Red} y} \cdot {\color{Red} y} \cdot {\color{Red} {(x - 4)}}} \, = {x-4 \over y} \]


Internetlänkar

http://www03.edu.fi/svenska/laromedel/matematik/nollkurs/pass6.html

http://tutorial.math.lamar.edu/Classes/Alg/RationalExpressions.aspx

http://www.youtube.com/watch?v=FZdt73khrxA&feature=channel

http://www.youtube.com/watch?v=hVIol-6vocY&feature=related </big>




Copyright © 2019 TechPages AB. All Rights Reserved.