Skillnad mellan versioner av "2.3a Lösning 10"

Från Mathonline
Hoppa till: navigering, sök
m
m
Rad 5: Rad 5:
  
  
:<math> \lim_{h \to 0} {f(x+h) - f(x) \over h} = \lim_{h \to 0} {{- h \over x\,(x+h)} \over h} = \lim_{h \to 0} {{- h \over x\,(x+h)} \over {h \over 1}} = \lim_{h \to 0} \; {- h\cdot 1 \over h\cdot x\,(x+h)} =  </math>
+
:<math> \lim_{h \to 0} {f(x+h) - f(x) \over h} = \lim_{h \to 0} \; {- 1 \over x\,(x+h)} = \lim_{h \to 0} \; {- 1 \over x^2 + x\,h} = - \, {1 \over x^2} </math>
 
+
 
+
::<math> = \lim_{h \to 0} \; {- 1 \over x\,(x+h)} = \lim_{h \to 0} \; {- 1 \over x^2 + x\,h} = - \, {1 \over x^2} </math>
+

Versionen från 4 september 2014 kl. 10.45

\[ f(x+h) - f(x) = {1 \over x+h} - {1 \over x} = {x \over x\,(x+h)} - {x+h \over x\,(x+h)} = {x - (x+h) \over x\,(x+h)} = {x - x - h \over x\,(x+h)} = {- h \over x\,(x+h)} \]


\[ {f(x+h) - f(x) \over h} = {- 1 \over x\,(x+h)} \]


\[ \lim_{h \to 0} {f(x+h) - f(x) \over h} = \lim_{h \to 0} \; {- 1 \over x\,(x+h)} = \lim_{h \to 0} \; {- 1 \over x^2 + x\,h} = - \, {1 \over x^2} \]