Skillnad mellan versioner av "3.2 Svar 4c"

Från Mathonline
Hoppa till: navigering, sök
m
m
Rad 3: Rad 3:
 
Till höger om denna punkt växer funktionen och derivatan är positiv. Derivatans teckenbyte går från <math> \, - \, </math> till <math> \, + \, </math>.  
 
Till höger om denna punkt växer funktionen och derivatan är positiv. Derivatans teckenbyte går från <math> \, - \, </math> till <math> \, + \, </math>.  
  
Det är därför funktionen har ett minimum i <math> \, x = 1 \, </math>, vilket bekräftar [[3.2_Maxima_och_minima#Regler_om_maxima_och_minima_med_teckenstudium|<strong><span style="color:blue">regeln om maxima och minima med teckenstudium</span></strong>]].
+
Det är därför funktionen har ett minimum i <math> \, x = 1 \, </math>, vilket är ett exempel på [[3.2_Maxima_och_minima#Regler_om_maxima_och_minima_med_teckenstudium|<strong><span style="color:blue">regeln om maxima och minima med teckenstudium</span></strong>]].

Versionen från 13 december 2014 kl. 17.19

Till vänster om funktionens minimum i \( \, x = 1 \, \) avtar funktionen, dvs derivatan är negativ.

Till höger om denna punkt växer funktionen och derivatan är positiv. Derivatans teckenbyte går från \( \, - \, \) till \( \, + \, \).

Det är därför funktionen har ett minimum i \( \, x = 1 \, \), vilket är ett exempel på regeln om maxima och minima med teckenstudium.