Skillnad mellan versioner av "3.3 Lösning 5a"
Taifun (Diskussion | bidrag) m |
Taifun (Diskussion | bidrag) m |
||
Rad 54: | Rad 54: | ||
:Minimipunktens koordinater<span style="color:black">:</span> <math> (-1, -1) </math> | :Minimipunktens koordinater<span style="color:black">:</span> <math> (-1, -1) </math> | ||
+ | |||
<math> f(x) \;\; {\rm har\;i} \;\; (0, 0) \;\; {\rm en\;terasspunkt\;och\;i} \;\; (-1, -1) \;\; {\rm en\;minimipunkt.} </math> | <math> f(x) \;\; {\rm har\;i} \;\; (0, 0) \;\; {\rm en\;terasspunkt\;och\;i} \;\; (-1, -1) \;\; {\rm en\;minimipunkt.} </math> |
Versionen från 10 januari 2015 kl. 14.06
\[\begin{array}{rcl} f(x) & = & 3\,x^4 + 4\,x^3 \\ f'(x) & = & 12\,x^3 + 12\,x^2 \\ f''(x) & = & 36\,x^2 + 24\,x \\ f'''(x) & = & 72\,x + 24 \end{array}\]
Derivatans nollställen:
\[\begin{array}{rcrcl} f'(x) & = & 12\,x^3 + 12\,x^2 & = & 0 \\ & & 12\,x^2\,(x + 1) & = & 0 \\ & & x_1 & = & 0 \\ & & x_2 & = & -1 \end{array}\]
Derivatan har två nollställen, ett i \( x_1 = 0 \) och ett i \( x_2 = -1 \).
Nollställe 1: \( {\color{White} x} x_1 = 0 \)
- Vi sätter in \( x_1 = 0 \, \) i andraderivatan:
- \[ f''(0) \, = \, 36\cdot 0^2 + 24\cdot 0 = 0 \]
- Vi sätter in \( x_1 = 0 \, \) i tredjederivatan:
- \[ f'''(0) \, = \, 72\cdot 0 + 24 = 0 + 24 = 24 \, \neq 0 \]
- \[ \, f\,'(0) \, = \, f\,''(0) \, = \, 0, \quad f\,'''(0) \, \neq \, 0 \quad \Longrightarrow \quad f(x) \;\; {\rm har\;i} \;\; x = 0 \;\; {\rm en\;terasspunkt.} \]
- Terasspunktens \( \, y\)-koordinat:
- \[\begin{array}{rcl} f(x) & = & 3\,x^4 + 4\,x^3 \\ f(0) & = & 3\cdot 0^4 + 4\cdot 0^3 \, = \, 3\cdot 0 + 4\cdot 0 \, = \, 0 \end{array}\]
- Terasspunktens koordinater: \( (0, 0) \)
Nollställe 2: \( {\color{White} x} x_2 = -1 \)
- Vi sätter in \( x_2 = -1 \, \) i andraderivatan:
- \[ f''(-1) \, = \, 36\cdot (-1)^2 + 24\cdot (-1) = 36\cdot 1 - 24 = 36 - 24 = 12 \, > \, 0 \]
- \[ \, f\,'(-1) \, = 0, \quad f\,''(-1) \, > \, 0 \quad \Longrightarrow \quad f(x) \;\; {\rm har\;i} \;\; x = -1 \;\; {\rm en\;minimipunkt.} \]
- Minimipunktens \( \, y\)-koordinat:
- \[\begin{array}{rcl} f(x) & = & 3\,x^4 + 4\,x^3 \\ f(-1) & = & 3\cdot (-1)^4 + 4\cdot (-1)^3 \, = \, 3\cdot 1 + 4\cdot (-1) \, = \, 3 - 4 \, = \, -1 \end{array}\]
- Minimipunktens koordinater: \( (-1, -1) \)
\( f(x) \;\; {\rm har\;i} \;\; (0, 0) \;\; {\rm en\;terasspunkt\;och\;i} \;\; (-1, -1) \;\; {\rm en\;minimipunkt.} \)