Skillnad mellan versioner av "3.4 Kurvkonstruktioner"
Taifun (Diskussion | bidrag) m (→Globalt extremum saknas) |
Taifun (Diskussion | bidrag) m (→Globalt extremum saknas) |
||
Rad 67: | Rad 67: | ||
En problematik som kan dyka upp när man är ute efter globala extrema är att de inte existerar. | En problematik som kan dyka upp när man är ute efter globala extrema är att de inte existerar. | ||
− | |||
'''Exempel:''' | '''Exempel:''' |
Versionen från 15 januari 2015 kl. 15.26
<-- Förra avsnitt | Teori | Övningar | --> Nästa avsnitt |
Innehåll
Fortfarande förutsätts att alla funktioner \( {\color{White} x} y \, = \, f(x) {\color{White} x} \) vi behandlar här är kontinuerliga i alla punkter av det betraktade området.
Globala maxima och minima
I avsnittet om Lokala maxima och minima hade vi tittat på sådana punkter som hade maximala och minimala \( \, y\)-värden i sin närmaste omgivning, därför "lokala", se bilden till höger.
I detta avsnitt ska vi betrakta sådana punkter som har största och minsta \( \, y\)-värden i ett intervall, därför "globala", se bilden till vänster.
I praktiken hittar man en funktions globala extrema genom att:
- Hitta funktionens lokala extrema med någon av de regler vi lärde oss i förra avsnitt (andraderivatan eller teckenstudium).
- Beräkna de lokala extremvärdena.
- Beräkna funktionsvärdena i definitionsintervallets ändpunkter.
- Jämföra de lokala extremvärdena med värdena i definitionsintervallets ändpunkter.
Globalt extremum saknas
En problematik som kan dyka upp när man är ute efter globala extrema är att de inte existerar.
Exempel:
Låt följande funktion vara definierad:
+++
Detta har inte nödvändigtvis att göra med funktionens egenskaper utan snarare med funktionens definitionsintervall. Det finns två olika typer av intervall: