Skillnad mellan versioner av "3.5 Lösning 1b"
Från Mathonline
		
		
		
Taifun  (Diskussion | bidrag) m  | 
				Taifun  (Diskussion | bidrag)  m  | 
				||
| Rad 5: | Rad 5: | ||
::<math> y = -\,{6 \over 5}\,x + 4 </math>  | ::<math> y = -\,{6 \over 5}\,x + 4 </math>  | ||
| − | Vi sätter in bivillkoret i   | + | Vi sätter in bivillkoret i arean för att eliminera <math> \, y \,</math>:  | 
::<math> A\,(x, \, y) \, = \, x \cdot y \, = \, x \cdot \left(-\,{6 \over 5}\,x + 4\right) \, = \, -\,{6 \over 5}\,x^2 \, + \, 4\,x </math>  | ::<math> A\,(x, \, y) \, = \, x \cdot y \, = \, x \cdot \left(-\,{6 \over 5}\,x + 4\right) \, = \, -\,{6 \over 5}\,x^2 \, + \, 4\,x </math>  | ||
Nuvarande version från 1 februari 2015 kl. 12.01
\( \, P \, \) har koordinaterna \( \, (x, y) \quad \Longrightarrow \quad \) Rektangelns area är \( \, A\,(x, \, y) \; = \; x \, \cdot \, y \)
Vi skriver om arean till en funktion \( \, A\,(x) \, \) av endast en variabel genom att utnyttja bivillkoret från a):
- \[ y = -\,{6 \over 5}\,x + 4 \]
 
Vi sätter in bivillkoret i arean för att eliminera \( \, y \,\):
- \[ A\,(x, \, y) \, = \, x \cdot y \, = \, x \cdot \left(-\,{6 \over 5}\,x + 4\right) \, = \, -\,{6 \over 5}\,x^2 \, + \, 4\,x \]
 
Målfunktionen blir då:
- \[ A\,(x) \, = \, -\,{6 \over 5}\,x^2 \, + \, 4\,x \]