Skillnad mellan versioner av "2.2 Genomsnittlig förändringshastighet"

Från Mathonline
Hoppa till: navigering, sök
m
m
Rad 4: Rad 4:
 
{{Selected tab|[[2.2 Genomsnittlig förändringshastighet|Genomgång]]}}
 
{{Selected tab|[[2.2 Genomsnittlig förändringshastighet|Genomgång]]}}
 
{{Not selected tab|[[2.2 Övningar till Genomsnittlig förändringshastighet|Övningar]]}}
 
{{Not selected tab|[[2.2 Övningar till Genomsnittlig förändringshastighet|Övningar]]}}
{{Not selected tab|[[2.3 Gränsvärde|Nästa avsnitt -->]]}}
+
{{Not selected tab|[[2.5 Deriveringsregler|Nästa demoavsnitt -->]]}}
 
| style="border-bottom:1px solid #797979"  width="100%"|  
 
| style="border-bottom:1px solid #797979"  width="100%"|  
 
|}
 
|}
Rad 12: Rad 12:
 
[[Media: Lektion_16_Genomsnittlig_forandringshastig.pdf|<strong><span style="color:blue">Lektion 16: Genomsnittlig förändringshastighet</span></strong>]]
 
[[Media: Lektion_16_Genomsnittlig_forandringshastig.pdf|<strong><span style="color:blue">Lektion 16: Genomsnittlig förändringshastighet</span></strong>]]
  
__TOC__
+
__TOC__ <!-- __NOTOC__ -->
  
  
== Exempel 1 Marginalskatt ==
+
<div class="exempel">
 +
== <b><span style="color:#931136">Exempel 1 Marginalskatt</span></b> ==
 +
Martins månadslön höjs från <math> \, 23\;000 \, </math> kr till <math> \, 24\;200 \, </math> kr.
  
Martins månadslön höjs från 23 000 kr till 24 200 kr. I [https://www.skatteverket.se/download/18.4a47257e143e26725ae1435/1391609286021/manadslon_tabell29.pdf <strong><span style="color:blue">Skatteverkets skattetabell</span></strong>] för 2014 (sida 2, kolumn 2) hittar vi 5 302 kr skatt för den gamla och 5 681 kr skatt för den nya lönen.
+
I [https://www.skatteverket.se/download/18.4a47257e143e26725ae1435/1391609286021/manadslon_tabell29.pdf <strong><span style="color:blue">Skatteverkets skattetabell</span></strong>] för 2014 (sida 2, kolumn 2) hittar vi <math> \, 5\;302 \, </math> kr skatt för den gamla och <math> \, 5\;681 \, </math> kr skatt för den nya lönen.
  
Beräkna skattens genomsnittliga förändringshastighet som kallas <big> <strong><span style="color:black">marginalskatt</span></strong>.
+
Beräkna skattens genomsnittliga förändringshastighet som kallas för ''marginalskatt''.
  
 
'''Lösning:'''
 
'''Lösning:'''
Rad 46: Rad 48:
  
 
Matematiskt uttryckt har vi beräknat funktionen <math>\,y</math>:s <strong><span style="color:red">genomsnittliga förändringshastighet</span></strong> i det betraktade <math>\,x</math>-intervallet.
 
Matematiskt uttryckt har vi beräknat funktionen <math>\,y</math>:s <strong><span style="color:red">genomsnittliga förändringshastighet</span></strong> i det betraktade <math>\,x</math>-intervallet.
 +
</div> <!-- exempel1 -->
  
  
== Exempel 2 Oljetank ==
+
<div class="exempel">
 
+
== <b><span style="color:#931136">Exempel 2 Oljetank</span></b> ==
 
<table>
 
<table>
 
<tr>
 
<tr>
   <td>En oljetank läcker genom ett hål i tankens botten. Utströmningen av oljan beskrivs av funktionen:
+
   <td>En oljetank läcker genom ett hål i tankens botten.
 +
 
 +
Utströmningen av oljan beskrivs av funktionen:
  
 
:::<math> y \, = \, 4\,x^2 - 380\,x + 9\,000 </math>
 
:::<math> y \, = \, 4\,x^2 - 380\,x + 9\,000 </math>
där <math> {\color{White} x} \quad \! x \, = \, {\rm Tiden\;i\;minuter} </math>
+
där <math> \; \quad \! x \, = \, {\rm Tiden\;i\;minuter} </math>
  
 
:::<math> y \, = \, {\rm Oljans\;volym\;i\;liter} </math>
 
:::<math> y \, = \, {\rm Oljans\;volym\;i\;liter} </math>
Rad 61: Rad 66:
 
'''a)''' &nbsp;&nbsp; Rita grafen till funktionen som beskriver utströmningen.
 
'''a)''' &nbsp;&nbsp; Rita grafen till funktionen som beskriver utströmningen.
  
'''b)''' &nbsp;&nbsp; Hur stor är oljans genomsnittliga utströmningshastighet i hela tidsintervallet från början tills tanken är tom.
+
'''b)''' &nbsp;&nbsp; Hur stor är oljans genomsnittliga utströmningshastighet i hela tidsintervallet
 +
 
 +
&nbsp; &nbsp; &nbsp; &nbsp;från början tills tanken är tom.
  
 
'''c)''' &nbsp;&nbsp; Beräkna oljans genomsnittliga utströmningshastighet i tidsintervallet <math> 20 \leq x \leq 30 </math>.
 
'''c)''' &nbsp;&nbsp; Beräkna oljans genomsnittliga utströmningshastighet i tidsintervallet <math> 20 \leq x \leq 30 </math>.
  
 
'''d)''' &nbsp;&nbsp; När är oljans utströmningshastighet störst? Beräkna ett närmevärde till denna hastighet.
 
'''d)''' &nbsp;&nbsp; När är oljans utströmningshastighet störst? Beräkna ett närmevärde till denna hastighet.
 
'''Lösning''':
 
 
'''a)''' &nbsp;&nbsp; Se grafen till höger.
 
 
</td>
 
</td>
   <td>[[Image: Ex2_70.jpg]]</td>
+
   <td>&nbsp; &nbsp; &nbsp; &nbsp; [[Image: Ex2a.jpg]]</td>
 
</tr>
 
</tr>
 
</table>
 
</table>
 +
</div> <!-- exempel2 -->
 +
 +
 +
'''Lösning:'''
 +
 +
'''a)''' &nbsp;&nbsp; Se grafen ovan.
 +
 
'''b)''' &nbsp;&nbsp; Grafen tyder pår att tanken är tom efter ca. 45 minuter. Den exakta tiden får man genom att lösa 2:a gradsekvationen:
 
'''b)''' &nbsp;&nbsp; Grafen tyder pår att tanken är tom efter ca. 45 minuter. Den exakta tiden får man genom att lösa 2:a gradsekvationen:
  
 
:::<math> 4\,x^2 - 380\,x + 9\,000 = 0 </math>
 
:::<math> 4\,x^2 - 380\,x + 9\,000 = 0 </math>
  
Räknarens ekvationslösare visar att <math> x = 45\, </math> är den exakta tiden. Därför är hela tidsintervallet från början tills tanken är tom <math> 0 \leq x \leq 45 </math>. I detta intervall är oljans genomsnittliga utströmningshastighet:
+
[[1.1_Fördjupning_till_Polynom#Digital_ber.C3.A4kning_av_nollst.C3.A4llen|<strong><span style="color:blue">Räknarens ekvationslösare</span></strong>]] visar att <math> x = 45\, </math> är den exakta tiden. Därför är hela tidsintervallet från början tills tanken är tom <math> 0 \leq x \leq 45 </math>. I detta intervall är oljans genomsnittliga utströmningshastighet:
  
 
:::<math> {\Delta y \over \Delta x} = {f(45) \, - \, f(0) \over 45 - 0} = {0 \, - \, 9000 \over 45} = {-9000 \over 45} = -200 </math>
 
:::<math> {\Delta y \over \Delta x} = {f(45) \, - \, f(0) \over 45 - 0} = {0 \, - \, 9000 \over 45} = {-9000 \over 45} = -200 </math>
Rad 110: Rad 120:
 
I tidsintervallet <math> 0 \leq x \leq 0,1 </math> sjunker oljans volym med <math> 379,6\, </math> liter per minut.
 
I tidsintervallet <math> 0 \leq x \leq 0,1 </math> sjunker oljans volym med <math> 379,6\, </math> liter per minut.
  
Faktiskt är denna approximation inget dåligt närmevärde för den momentana utströmningshastigheten vid tiden <math> x = 0\, </math>, för det exakta värdet är <math> -380\, </math>. I avsnittet [[2.4_Derivatans_definition|<strong><span style="color:blue">2.4 Derivatans definition</span></strong>]] kommer vi att lära oss hur man får reda på det exakta värdet.
+
Faktiskt är denna approximation inget dåligt närmevärde för den momentana utströmningshastigheten vid tiden <math> x = 0\, </math>, för det exakta värdet är <math> -380\, </math>. I avsnittet [[Detta avsnitt ingår inte i demon.|<strong><span style="color:blue">2.4 Derivatans definition</span></strong>]] kommer vi att lära oss hur man får reda på det exakta värdet.
  
  
== Exempel 3 Kvadratisk funktion ==
+
<div class="exempel">
 
+
== <b><span style="color:#931136">Exempel 3 Kvadratisk funktion</span></b> ==
'''Givet''':
+
<table>
 +
<tr>
 +
  <td>'''Givet''':
 
:::<big> Funktionen <math> y \, = \, f(x) \, = \, x^2 </math> </big>
 
:::<big> Funktionen <math> y \, = \, f(x) \, = \, x^2 </math> </big>
  
Rad 124: Rad 136:
  
 
'''Lösning''':
 
'''Lösning''':
 +
:::<math> {\Delta y \over \Delta x} = {y\, {\rm:s\;ändring} \over x\, {\rm:s\;ändring}} \; = \; {f(2) \, - \, f(0) \over 2 - 0} \; = \; {2^2 \, - \, 0^2 \over 2 - 0} \; = \; {4 \, - \, 0 \over 2} \; = \; {4 \over 2} \; = \; {\color{Red} 2} </math>
  
:::<math> {\Delta y \over \Delta x} = {y\, {\rm:s\;ändring} \over x\, {\rm:s\;ändring}} \; = \; {f(2) \, - \, f(0) \over 2 - 0} \; = \; {2^2 \, - \, 0^2 \over 2 - 0} \; = \; {4 \, - \, 0 \over 2} \; = \; {4 \over 2} \; = \; 2 </math>
+
</td>
 
+
  <td>&nbsp; &nbsp; &nbsp; &nbsp; [[Image: Ex1a.jpg]]</td>
I <math> \, x</math>-intervallet ersätts kurvan <math> y = x^2 </math> av en &nbsp; <strong><span style="color:red">rät linje</span></strong> &nbsp; vars &nbsp; <strong><span style="color:red">lutning &nbsp; 2</span></strong> &nbsp; är kurvans <strong><span style="color:red">genomsnittliga förändringshastighet</span></strong> i det betraktade intervallet:
+
</tr>
+
</table>
:::[[Image: Ex1_70.jpg]]
+
<big>
 
+
I <math> \, x</math>-intervallet ersätts kurvan <math> \, y = x^2 \, </math> av en <strong><span style="color:red">rät linje</span></strong> vars <strong><span style="color:red">lutning</span></strong> är kurvans <strong><span style="color:red">genomsnittliga förändringshastighet</span></strong> i intervallet <math> 0 \leq x \leq 2 </math>:
Funktionen <math> y = x^2 \, </math> växer i hela intervallet <math> 0 \leq x \leq 2 </math> (dvs i genomsnitt) med <math> 2 \; y </math>-enheter per <math> \, x</math>-enhet. Detta innebär att lutningen och därmed funktionens genomsnittliga förändringshastighet i intervallet &nbsp; <math> 0 \leq x \leq 2 </math> &nbsp; är &nbsp;&nbsp; <math> 2\,</math>.
+
  
 +
Funktionen <math> y = x^2 \, </math> växer i detta intervall med <math> 2 \; y </math>-enheter per <math> \, x</math>-enhet, vilket innebär att lutningen och därmed funktionens genomsnittliga förändringshastighet där är <math> \ {\color{Red} 2} </math>.
 +
</big>
 +
</div> <!-- exempel3 -->
  
== Allmän definition ==
 
  
 +
== <b><span style="color:#931136">Allmän definition</span></b> ==
 +
<div class="tolv"> <!-- tolv1 -->
 
'''Givet''':
 
'''Givet''':
  
:::<big>Funktionen <math> y \, = \, f\,(x) </math> i form av en formel, tabell eller graf.
+
:::Funktionen <math> y \, = \, f\,(x) </math> i form av en formel, tabell eller graf.
  
:::Något intervall på <math> x\, </math>-axeln med givna gränser <math> x_1\, </math> och <math> x_2\, </math> dvs: <math> x_1 \,\leq\, x \,\leq\, x_2 </math> </big>
+
:::Något intervall på <math> x\, </math>-axeln med givna gränser <math> \, x_1 \, </math> och <math> \, x_2 \, </math> dvs <math> \; x_1 \,\leq\, x \,\leq\, x_2 </math>.
  
 
'''Sökt''':
 
'''Sökt''':
  
:::<big>Funktionens genomsnittliga förändringshastighet i detta intervall. </big>
+
:::Funktionens genomsnittliga förändringshastighet i detta intervall.
 +
 
  
 
'''Lösning''':
 
'''Lösning''':
Rad 159: Rad 176:
  
 
I formeln ovan ersätter vi <math> \, x_2 </math> med <math> \,x_1 + h </math> och <math> \, x_2 - x_1 </math> med <math> \, h </math>.  
 
I formeln ovan ersätter vi <math> \, x_2 </math> med <math> \,x_1 + h </math> och <math> \, x_2 - x_1 </math> med <math> \, h </math>.  
 +
  
 
Funktionen <math> y = f\,(x) </math>:s <strong><span style="color:red">genomsnittliga förändringshastighet</span></strong> i ett intervall kan då definieras som:
 
Funktionen <math> y = f\,(x) </math>:s <strong><span style="color:red">genomsnittliga förändringshastighet</span></strong> i ett intervall kan då definieras som:
  
<div class="border-div">
+
 
:<math> {\Delta y \over \Delta x} \; = \; {f(x_1 + h) \, - \, f(x_1) \over h} \qquad {\rm i\;\;intervallet } \qquad x_1 \,\leq\, x \,\leq\, x_1 + h </math>
+
<div class="border-div2">
 +
<math> \displaystyle {{\Delta y \over \Delta x} \; = \; {f(x_1 + h) \, - \, f(x_1) \over h}} \qquad {\rm i\;\;intervallet } \qquad x_1 \,\leq\, x \,\leq\, x_1 + h </math>
 
</div>
 
</div>
  
Kärt barn har många namn: De två uttrycken ovan har ett antal namn som allihopa kan anses vara synonymer:
 
  
:::<big>Genomsnittlig förändringshastighet</big>
+
<div class="exempel">
 +
'''Beteckningar:'''
  
:::<big>Förändringskvot</big>
+
Kärt barn har många namn: &nbsp; Uttrycken i definitionen ovan har ett antal beteckningar som allihopa är synonymer:
  
:::<big>Ändringskvot</big>
+
::::::::Genomsnittlig förändringshastighet
  
:::<big>Differenskvot</big>
+
::::::::Förändringskvot
  
Om vi kommer ihåg hur begreppet <strong><span style="color:red">lutning</span></strong> till en rät linje definieras i Matte 2-kursen, kan vi säga att uttrycken ovan beskriver lutningen till den räta linje som ersätter kurvan <math> y = f\,(x) </math> i det betraktade intervallet.
+
::::::::Ändringskvot
  
Dvs om man bortser från kurvans kanske krokiga förlopp och antar istället att det går en rät linje i det betraktade intervallet kan denna räta linjes lutning beräknas med uttrycken ovan. Den räta linjens lutning är kurvans genomsnittliga förändringshastighet i det betraktade intervallet.
+
::::::::Differenskvot
 +
</div>
 +
</div> <!-- tolv1 -->
  
  
Rad 197: Rad 218:
  
  
[[Matte:Copyrights|Copyright]] © 2011-2015 Taifun Alishenas. All Rights Reserved.
+
[[Matte:Copyrights|Copyright]] © 2011-2015 Math Online Sweden AB. All Rights Reserved.

Versionen från 3 juli 2015 kl. 14.25

       <-- Förra avsnitt          Genomgång          Övningar          Nästa demoavsnitt -->      


Lektion 16: Genomsnittlig förändringshastighet


Exempel 1 Marginalskatt

Martins månadslön höjs från \( \, 23\;000 \, \) kr till \( \, 24\;200 \, \) kr.

I Skatteverkets skattetabell för 2014 (sida 2, kolumn 2) hittar vi \( \, 5\;302 \, \) kr skatt för den gamla och \( \, 5\;681 \, \) kr skatt för den nya lönen.

Beräkna skattens genomsnittliga förändringshastighet som kallas för marginalskatt.

Lösning:

Skatten ökar med lönen. Den är beroende av lönen. Detta innebär att skatten är en funktion av lönen. Vi inför följande beteckningar:

\[ x \, = \, {\rm Månadslönen\;i\;kr} \]
\[ y \, = \, {\rm Skatten\;i\;kr} \]

Då blir \( y\, \) är en funktion av \( x\, \) som i det här fallet inte är definierad med en formel utan i tabellform:

\( x\, \) \( y\, \)
\( 23\,000 \) \( 5\,302 \)
\( 24\,200 \) \( 5\,681 \)

Marginalskatten är skattens genomsnittliga förändringshastighet, dvs:

\[ {\Delta y \over \Delta x} = {y\, {\rm:s\;ändring} \over x\, {\rm:s\;ändring}} = {{\rm Skattehöjningen} \over {\rm Lönehöjningen}} = {5\,681 - 5\,302 \over 24\,200 - 23\,000} \; = \; {379 \over 1200} \; = \; 0,316 \; = \; 31,6 \, \%\]

Marginalskatten är därmed \(31,6 \, \% \), vilket i praktiken innebär att Martin måste betala \(31,6\,\) öre i skatt för varje mer intjänad krona.

Matematiskt uttryckt har vi beräknat funktionen \(\,y\):s genomsnittliga förändringshastighet i det betraktade \(\,x\)-intervallet.


Exempel 2 Oljetank

En oljetank läcker genom ett hål i tankens botten.

Utströmningen av oljan beskrivs av funktionen:

\[ y \, = \, 4\,x^2 - 380\,x + 9\,000 \]

där \( \; \quad \! x \, = \, {\rm Tiden\;i\;minuter} \)

\[ y \, = \, {\rm Oljans\;volym\;i\;liter} \]

a)    Rita grafen till funktionen som beskriver utströmningen.

b)    Hur stor är oljans genomsnittliga utströmningshastighet i hela tidsintervallet

       från början tills tanken är tom.

c)    Beräkna oljans genomsnittliga utströmningshastighet i tidsintervallet \( 20 \leq x \leq 30 \).

d)    När är oljans utströmningshastighet störst? Beräkna ett närmevärde till denna hastighet.

        Ex2a.jpg


Lösning:

a)    Se grafen ovan.

b)    Grafen tyder pår att tanken är tom efter ca. 45 minuter. Den exakta tiden får man genom att lösa 2:a gradsekvationen:

\[ 4\,x^2 - 380\,x + 9\,000 = 0 \]

Räknarens ekvationslösare visar att \( x = 45\, \) är den exakta tiden. Därför är hela tidsintervallet från början tills tanken är tom \( 0 \leq x \leq 45 \). I detta intervall är oljans genomsnittliga utströmningshastighet:

\[ {\Delta y \over \Delta x} = {f(45) \, - \, f(0) \over 45 - 0} = {0 \, - \, 9000 \over 45} = {-9000 \over 45} = -200 \]

I hela tidsintervallet \( 0 \leq x \leq 45 \) sjunker oljans volym med 200 liter per minut.


c)    Oljans genomsnittliga utströmningshastighet i tidsintervallet \( 20 \leq x \leq 30 \):

\[ f\,(30) = 4 \cdot 30^2 - 380 \cdot 30 + 9\,000 = 1200 \]
\[ f\,(20) = 4 \cdot 20^2 - 380 \cdot 20 + 9\,000 = 3000 \]
\[ {\Delta y \over \Delta x} = {f(30) \, - \, f(20) \over 30 - 20} = {1200 \, - \, 3000 \over 30 - 20} = {-1800 \over 10} = -180 \]

I tidsintervallet \( 20 \leq x \leq 30 \) sjunker oljans volym med 180 liter per minut.


d)    Grafen i a) visar att kurvans lutning är störst i början dvs vid tiden \( x = 0\, \) när oljan har mest volym, nämligen \( 9\,000 \) liter. Därför är även oljans utströmningshastighet störst vid denna tidpunkt. Men denna hastighet är inte längre genomsnittlig i något intervall utan ögonblicklig vid en viss tidpunkt eller momentan.

För att beräkna den momentana och därmed den exakta utströmningshastigheten vid tiden \( x = 0\, \) måste man bestämma funktionen \( y\, \):s exakta derivata, vilket vi inte lärt oss ännu.

För att approximera den momentana utströmningshastigheten vid tiden \( x = 0\, \) så noggrant som möjligt måste vi välja ett så litet tidsintervall som möjligt med \( x = 0\, \) som undre intervallgräns.

Låt oss t.ex. beräkna oljans genomsnittliga utströmningshastighet i tidsintervallet \( 0 \leq x \leq 0,1 \):

\[ f\,(0,1) = 4 \cdot 0,1^2 - 380 \cdot 0,1 + 9\,000 = 8962,04 \]
\[ {\Delta y \over \Delta x} = {f(0,1) \, - \, f(0) \over 0,1 - 0} = {8962,04 \, - \, 9000 \over 0,1} = {-37,96 \over 0,1} = -379,6 \]

I tidsintervallet \( 0 \leq x \leq 0,1 \) sjunker oljans volym med \( 379,6\, \) liter per minut.

Faktiskt är denna approximation inget dåligt närmevärde för den momentana utströmningshastigheten vid tiden \( x = 0\, \), för det exakta värdet är \( -380\, \). I avsnittet 2.4 Derivatans definition kommer vi att lära oss hur man får reda på det exakta värdet.


Exempel 3 Kvadratisk funktion

Givet:
Funktionen \( y \, = \, f(x) \, = \, x^2 \)
Intervallet \( 0 \,\leq\, x \,\leq\, 2 \)

Sökt:

Funktionens genomsnittliga förändringshastighet i \( \, x\)-intervallet.

Lösning:

\[ {\Delta y \over \Delta x} = {y\, {\rm:s\;ändring} \over x\, {\rm:s\;ändring}} \; = \; {f(2) \, - \, f(0) \over 2 - 0} \; = \; {2^2 \, - \, 0^2 \over 2 - 0} \; = \; {4 \, - \, 0 \over 2} \; = \; {4 \over 2} \; = \; {\color{Red} 2} \]
        Ex1a.jpg

I \( \, x\)-intervallet ersätts kurvan \( \, y = x^2 \, \) av en rät linje vars lutning är kurvans genomsnittliga förändringshastighet i intervallet \( 0 \leq x \leq 2 \):

Funktionen \( y = x^2 \, \) växer i detta intervall med \( 2 \; y \)-enheter per \( \, x\)-enhet, vilket innebär att lutningen och därmed funktionens genomsnittliga förändringshastighet där är \( \ {\color{Red} 2} \).


Allmän definition

Givet:

Funktionen \( y \, = \, f\,(x) \) i form av en formel, tabell eller graf.
Något intervall på \( x\, \)-axeln med givna gränser \( \, x_1 \, \) och \( \, x_2 \, \) dvs \( \; x_1 \,\leq\, x \,\leq\, x_2 \).

Sökt:

Funktionens genomsnittliga förändringshastighet i detta intervall.


Lösning:

Funktionen \( y = f\,(x) \):s genomsnittliga förändringshastighet i intervallet \( x_1 \,\leq\, x \,\leq\, x_2 \) kan vi enligt exemplen 1-3 börja att skriva så här:

\[ {\Delta y \over \Delta x} = {y\, {\rm:s\;ändring} \over x\, {\rm:s\;ändring}} \; = \; {y_2 - y_1 \over x_2 - x_1} \; = \; {f(x_2) \, - \, f(x_1) \over x_2 - x_1} \]

En enklare form på uttrycket ovan får man om man inför den nya beteckningen \( h\, \) för intervallets längd:

\[\begin{align} h & = x_2 - x_1 \qquad & | \; + \, x_1 \\ x_1 + h & = x_2 \\ \end{align}\]

I formeln ovan ersätter vi \( \, x_2 \) med \( \,x_1 + h \) och \( \, x_2 - x_1 \) med \( \, h \).


Funktionen \( y = f\,(x) \):s genomsnittliga förändringshastighet i ett intervall kan då definieras som:


\( \displaystyle {{\Delta y \over \Delta x} \; = \; {f(x_1 + h) \, - \, f(x_1) \over h}} \qquad {\rm i\;\;intervallet } \qquad x_1 \,\leq\, x \,\leq\, x_1 + h \)


Beteckningar:

Kärt barn har många namn:   Uttrycken i definitionen ovan har ett antal beteckningar som allihopa är synonymer:

Genomsnittlig förändringshastighet
Förändringskvot
Ändringskvot
Differenskvot


Internetlänkar

http://www.youtube.com/watch?v=08yI3grz17I

http://www.youtube.com/watch?v=Cze2KrRhHiM

http://www.iceclimbers.net/fil/matematik_c/12.genomsnittlig_forandringshastighet.pdf

http://ingforum.haninge.kth.se/matCD/F%F6rel%E4sning01.pdf





Copyright © 2011-2015 Math Online Sweden AB. All Rights Reserved.