Skillnad mellan versioner av "Potenser"

Från Mathonline
Hoppa till: navigering, sök
m
m
Rad 266: Rad 266:
 
== <b><span style="color:#931136">Potenser med rationella exponenter</span></b> ==
 
== <b><span style="color:#931136">Potenser med rationella exponenter</span></b> ==
 
<div class="tolv"> <!-- tolv6 -->
 
<div class="tolv"> <!-- tolv6 -->
Potenser med exponenter som är [[1.1_Om_tal#Olika_typer_av_tal|<b><span style="color:red">rationella tal</span></b>]] (bråktal) är ett annat sätt att skriva rötter.
+
Här ska vi lägga till [[4.1 Potenser#Potenslagarna|<b><span style="color:blue">Potenslagarna</span></b>]] ytterligare tre lagar om potenser med rationella exponenter.
  
Därför kan de användas för att beräkna både kvadratrötter och högre rötter.
+
Potenser med rationella exponenter är potenser som har [http://34.248.89.132:1800/index.php?title=1.1_Om_tal#Olika_typer_av_tal <b><span style="color:red">rationella tal</span></b>] (bråktal) i exponenten.
  
Följande samband råder mellan potenser med rationella exponenter och rötter:
+
De är bara ett annat sätt att skriva rötter, både kvadratrötter och högre rötter:
  
 
'''Påstående''':
 
'''Påstående''':
Rad 284: Rad 284:
 
:::<big><math> \displaystyle a^{1 \over 2} \cdot a^{1 \over 2} \; = \; a^{{1 \over 2} + {1 \over 2}} \; = \; a^{2 \over 2} \; = \; a^1 \; = \; a </math></big>
 
:::<big><math> \displaystyle a^{1 \over 2} \cdot a^{1 \over 2} \; = \; a^{{1 \over 2} + {1 \over 2}} \; = \; a^{2 \over 2} \; = \; a^1 \; = \; a </math></big>
  
Å andra sidan är definitionen för kvadratroten ur <math> \, a </math><span style="color:black">:</span>
+
Vi drar kvadratroten ur båda leden och går vidare<span style="color:black">:</span>
  
<big><math> \qquad\quad \displaystyle \sqrt{a} \; = \; </math></big> Tal som 2 gånger multiplicerat med sig själv ger <math> \, a </math>.
+
:::<big><math>\begin{array}{rclcl}    a^{1 \over 2} \cdot a^{1 \over 2} & = & a        & \qquad | & \sqrt{\,.\,} \\
 +
                              \sqrt{a^{1 \over 2} \cdot a^{1 \over 2}} & = & \sqrt{a} &          &              \\
 +
                                                        a^{1 \over 2}  & = & \sqrt{a} & \qquad  &              \\
 +
              \end{array}</math></big>
 +
'''V.s.b.''' &nbsp; ('''V'''ilket '''s'''kulle '''b'''evisas)
  
Av raderna ovan följer<span style="color:black">:</span>
+
I följande ska <math> \; n \; </math> vara ett heltal <math> > 0 </math> och <math> \, a \, \neq 0 </math>.
 
+
:::<big><math> \displaystyle a^{1 \over 2} \; = \; \sqrt{a} </math></big>
+
 
+
 
+
I följande ska alltid gälla<span style="color:black">:</span> <math> \quad m, n \, </math> heltal och <math> \, n \, \neq 0 \quad </math>.
+
  
 
'''Påstående''':
 
'''Påstående''':
Rad 309: Rad 308:
 
:::<big><math> \displaystyle a^{1 \over 3} \cdot a^{1 \over 3} \cdot a^{1 \over 3} \; = \; a^{{1 \over 3} + {1 \over 3} + {1 \over 3}} \; = \; a^{3 \over 3} \; = \; a^1 \; = \; a </math></big>
 
:::<big><math> \displaystyle a^{1 \over 3} \cdot a^{1 \over 3} \cdot a^{1 \over 3} \; = \; a^{{1 \over 3} + {1 \over 3} + {1 \over 3}} \; = \; a^{3 \over 3} \; = \; a^1 \; = \; a </math></big>
  
Å andra sidan är definitionen för 3:e roten ur <math> \, a </math><span style="color:black">:</span>
+
Vi drar 3:e roten ur båda leden och går vidare<span style="color:black">:</span>
 +
:::<big><math>\begin{array}{rclcl}    a^{1 \over 3} \cdot a^{1 \over 3} \cdot a^{1 \over 3} & = & a        & \qquad | & \sqrt[3]{\,.\,} \\
 +
                            \sqrt[3]{a^{1 \over 3} \cdot a^{1 \over 3} \cdot a^{1 \over 3}} & = & \sqrt[3]{a} &          &              \\
 +
                                                                            a^{1 \over 3}  & = & \sqrt[3]{a} & \qquad  &              \\
 +
        \end{array}</math></big>
 +
'''V.s.b.'''
  
<big><math> \qquad\quad \displaystyle \sqrt[3]{a} \; = \; </math></big> Tal som 3 gånger multiplicerat med sig själv ger <math> \, a </math>.
+
Denna bevisidé kan vidareutvecklas till det allmänna fallet, där <math> \, m \, </math> ska vara ett heltal, <math> \, n \, </math> ett heltal <math> > 0 </math> och <math> \, a \, \neq 0 </math>:
 
+
Av raderna ovan följer<span style="color:black">:</span>
+
 
+
:::<big><math> \displaystyle a^{1 \over 3} \; = \; \sqrt[3]{a} </math></big>
+
 
+
Denna bevisidé kan vidareutvecklas till det allmänna fallet:
+
  
 
<div class="border-divblue">
 
<div class="border-divblue">
Rad 323: Rad 321:
 
</div> <!-- border-divblue -->
 
</div> <!-- border-divblue -->
  
Tabellen över [[Potenser#Potenslagarna|<b><span style="color:blue">Potenslagarna</span></b>]] borde kompletteras med dessa lagar för rationella exponenter.
+
Tabellen över [[4.1 Potenser#Potenslagarna|<b><span style="color:blue">Potenslagarna</span></b>]] borde kompletteras med dessa lagar för rationella exponenter.
 +
 
  
 
</div> <!-- tolv6 -->
 
</div> <!-- tolv6 -->

Versionen från 14 januari 2018 kl. 13.37

        <<  Tillbaka till Polynom          Genomgång          Quiz (Matte1b)          Övningar      


Potenser är ett repeterande underavsnitt i avsnittet Polynom. Övningar till Potenser finns separat i fliken ovan.


Repetition om potenser

Potens Bas Exponent 80.jpg            

Exempel på potens:

\[ 2\,^{\color{Red} 3} \; = \;\; \underbrace{2 \, \cdot \, 2 \, \cdot \, 2}_{{\color{Red} 3}\;\times} \; = \; 8\]

Potens = upprepad multiplikation

av \( \, 2 \, \) med sig själv, \( \, {\color{Red} 3} \, \) gånger.


OBS!   Förväxla inte begreppen: \( \, 2\,^3 \, \) är själva potensen, medan \( \, {\color{Red} 3} \, \) är exponenten och \( \, {\color{green} 2}\, \) förstås basen.

Exponenten \( \, {\color{Red} 3} \, \) är inget tal som ingår i beräkningen, utan endast en information om att:

\( \, 2 \, \) ska multipliceras \( \, {\color{Red} 3} \, \) gånger med sig själv, en förkortning för upprepad multiplikation (jfr. upprepad addition).


Exempel

Förenkla: \( \qquad \displaystyle{2\,^3 \cdot \; 2\,^5 \over 2\,^4} \)


Lösning: \( \qquad \displaystyle{{2\,^3 \cdot \; 2\,^5 \over 2\,^4} \, = \, {2 \cdot 2 \cdot 2 \quad \cdot \quad 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \over 2 \cdot 2 \cdot 2 \cdot 2} \, = \, {2 \cdot 2 \cdot 2 \quad \cdot \quad 2 \cdot \cancel{2 \cdot 2 \cdot 2 \cdot 2} \over \cancel{2 \cdot 2 \cdot 2 \cdot 2}} \, = \, 2 \cdot 2 \cdot 2 \cdot 2 \, = \, 4 \cdot 4 \, = \, 16} \)

OBS!   Förenkla alltid först, räkna sedan!

Snabbare: \( \qquad\!\! \displaystyle{{2\,^3 \cdot \; 2\,^5 \over 2\,^4} \, = \, 2\,^{3\,+\,5\,-\,4} \, = \, 2\,^4 \, = \, 2 \cdot 2 \cdot 2 \cdot 2 \, = \, 4 \cdot 4 \, = \, 16} \)

För att förstå den snabbare lösningen se Potenslagarna.


Generellt:

Potenser med positiva exponenter

Potensen \( \, a\,^{\color{Red} x} \, \) med positiv exponent (\( x \, \) heltal \( > 0 \, \) och \( \, a \, \neq 0 \)) kan definieras som:

Upprepad multiplikation av \( \, a \, \) med sig själv, \( \, {\color{Red} x} \, \) gånger:
\( \quad a\,^{\color{Red} x} = \underbrace{a \cdot a \cdot a \cdot \quad \ \cdots \quad \cdot a}_{{\color{Red} x}\;{\rm gånger}} \)


Potenslagarna

Första potenslagen: \( \qquad\qquad\quad\;\, a^x \cdot a^y \; = \; a\,^{x \, + \, y} \qquad\qquad \)


Andra potenslagen: \( \qquad\qquad\qquad\;\;\; \displaystyle {a^x \over a^y} \; = \; a\,^{x \, - \, y} \qquad\qquad \)


Tredje potenslagen: \( \qquad\qquad\qquad \displaystyle {(a^x)^y} \; = \; a\,^{x \, \cdot \, y} \qquad\qquad \)


Lagen om nollte potens: \( \qquad\qquad\quad\;\;\, a\,^0 \; = \; 1 \qquad\qquad \)


Lagen om negativ exponent: \( \qquad\quad\;\;\; a\,^{-x} \; = \; \displaystyle {1 \over a\,^x} \qquad\qquad \)


Potens av en produkt: \( \qquad\qquad\;\, (a \cdot b)\,^x \; = \; a\,^x \cdot b\,^x \qquad\qquad \)


Potens av en kvot: \( \qquad\qquad\qquad\, \left(\displaystyle {a \over b}\right)^x \; = \; \displaystyle {a\,^x \over b\,^x} \qquad\qquad \)


Dessa lagar gäller för potenser där baserna \( \, a,\,b \, \) är tal \( \, \neq 0 \, \) och exponenterna \( \, x,\,y \, \) är godtyckliga tal.


Exempel på första potenslagen

Förenkla: \( \quad\;\; a\,^2 \, \cdot \, a\,^3 \)


Lösning:

\( a\,^2 \cdot a\,^3 \; = \; \underbrace{a \cdot a}_{2\;\times} \; \cdot \; \underbrace{a \cdot a \cdot a}_{3\;\times} \; = \; \underbrace{a \cdot a \cdot a \cdot a \cdot a}_{{\color{Red} 5}\;\times} \; = \; a\,^{\color{Red} 5}\)

Snabbare:

\( a\,^2 \cdot a\,^3 \; = \; a\,^{2\,+\,3} = \; a\,^{\color{Red} 5} \)


Den snabbare lösningen ovan är ett exempel på den första potenslagen. Nedan följer ett exempel på den andra potenslagen.


Exempel på andra potenslagen

\( \displaystyle {a\,^{\color{Red} 5} \over a\,^{\color{Red} 3}} \; = \; {a \cdot a \cdot a \cdot a \cdot a \; \over \; a \cdot a \cdot a} \; = \; {a \cdot a \cdot \cancel{a \cdot a \cdot a} \; \over \; \cancel{a \cdot a \cdot a}} \; = \; a \cdot a \; = \; a\,^2 \)

Snabbare:

\( \displaystyle {a\,^{\color{Red} 5} \over a\,^{\color{Red} 3}} \; = \; a\,^{{\color{Red} {5\,-\,3}}} \; = \; a\,^2 \)


Potensbegreppet definierades inledningsvis endast för positiva exponenter. Men den definitionen duger varken för negativa exponenter eller för exponenten \( \, 0 \, \):

Antalet multiplikationer av basen med sig själv kan inte vara negativt eller \( \, 0 \, \). Det behövs nya definitioner resp. slutsatser.


Potenser med negativa exponenter

Hur raknar du negativa exponenter 20.jpg


Potens med negativ exponent:

\( \qquad \displaystyle 2\,^{\color{Red} {-3}} \; = \;\; \frac{1}{2\,^{\color{Red} {3}}} \; = \; \frac{1}{8} \quad \)

Invertera potensen med positiv exponent.


Att "invertera" t.ex. \( \, 10 \, \) ger \( \, \displaystyle {1 \over 10} \; \).


      

Andra exempel:

\[ \displaystyle{10\,^{-1} \, = \, {1 \over 10\,^1} \, = \, {1 \over 10} \, = \, 0,1} \]
\[ \displaystyle{10\,^{-2} \, = \, {1 \over 10\,^2} \, = \, {1 \over 10 \cdot 10} \, = \, {1 \over 100} \, = \, 0,01} \]
\[ \displaystyle{10\,^{-3} \, = \, {1 \over 10\,^3} \, = \, {1 \over 10 \cdot 10 \cdot 10} \, = \, {1 \over 1000} \, = \, 0,001} \]

Generellt:

Påstående:

Lagen om negativ exponent \( \quad a\,^{-x} \; = \; \displaystyle {1 \over a\,^x} \)

Bevis:

\( \displaystyle{1 \over a^x} \; = \; \displaystyle{a^0 \over a^x} \; = \; a^{0-x} \; = \; a^{-x} \)

In den första likheten har vi använt lagen om nollte potens baklänges: \( \; 1 = a^0 \; \).

In den andra likheten har vi använt andra potenslagen: \( \; \displaystyle {a^x \over a^y} \; = \; a\,^{x \, - \, y} \; \).

Efter dessa steg får vi påståendet, fast baklänges.


Potenser med exponenten \( \, 0 \, \)

Exempel:

\( \quad \displaystyle 2\,^{\color{Red} 0} \;\; = \;\; 1 \quad \)


Generellt:

Påstående:

Lagen om nollte potens \( \quad a^0 \; = \; 1 \; \)

Bevis:

Påståendet kan bevisas genom att använda andra potenslagen:

\( \displaystyle{a^x \over a^x} \; = \; a^{x-x} \; = \; a^0 \)

Å andra sidan vet vi att ett bråk med samma täljare som nämnare har värdet \( \, 1 \):

\( \displaystyle{a^x \over a^x} \; = \; 1 \)

Av raderna ovan följer påståendet:

\( a^0 \; = \; 1 \)


I båda föregående påståenden ska alltid gälla: \( \quad x \, \) heltal \( > 0 \, \) och \( \, a \, \neq 0 \quad \).


Exemplet nedan ska illustrera lagen ovan genom att visa följande:

Potenser med negativa exponenter är en naturlig fortsättning på potenser med positiva exponenter.

Nollte potensen bildar övergången mellan positiva och negativa exponenter, precis som \( \, 0 \, \) är övergången mellan positiva och negativa tal:


Varför är \( \; 5\,^0 \, = \, 1 \; \)?

\[ \;\; 5^4 \; = \; {\color{Red} 1} \cdot 5 \cdot 5 \cdot 5 \cdot 5 \]
\[ \;\; 5^3 \; = \; {\color{Red} 1} \cdot 5 \cdot 5 \cdot 5 \]
\[ \;\; 5^2 \; = \; {\color{Red} 1} \cdot 5 \cdot 5 \]
\[ \;\; 5^1 \; = \; {\color{Red} 1} \cdot 5 \]
\[ \; \boxed{{\color{Red} {5^0 \; = \; 1}}} \]
\[ \;\; 5^{-1} \; = \; \displaystyle{{\color{Red} 1} \over 5} \]
\[ \;\; 5^{-2} \; = \; \displaystyle{{\color{Red} 1} \over 5 \cdot 5} \]
\[ \;\; 5^{-3} \; = \; \displaystyle{{\color{Red} 1} \over 5 \cdot 5 \cdot 5} \]
\[ \;\; 5^{-4} \; = \; \displaystyle{{\color{Red} 1} \over 5 \cdot 5 \cdot 5 \cdot 5 } \]

Att \( \; {\color{Red} 1} \)-orna följer med hela tiden beror på att multiplikationens enhet är \( \, {\color{Red} 1} \), dvs \( \, a \cdot {\color{Red} 1} \, = \, a \).

Därför blir endast \( \, {\color{Red} 1} \, \) kvar, när vi kommer till \( \, {\color{Red} {5^0}} \, \) då alla \( \, 5\)-or har försvunnit.


Potenser med rationella exponenter

Här ska vi lägga till Potenslagarna ytterligare tre lagar om potenser med rationella exponenter.

Potenser med rationella exponenter är potenser som har rationella tal (bråktal) i exponenten.

De är bara ett annat sätt att skriva rötter, både kvadratrötter och högre rötter:

Påstående:

Lagen om kvadratroten \( \quad a^{1 \over 2} \; = \; \sqrt{a} \)

Bevis:

Vi multiplicerar \( a \)\(^{1 \over 2} \) två gånger med sig själv och använder första potenslagen:

\( \displaystyle a^{1 \over 2} \cdot a^{1 \over 2} \; = \; a^{{1 \over 2} + {1 \over 2}} \; = \; a^{2 \over 2} \; = \; a^1 \; = \; a \)

Vi drar kvadratroten ur båda leden och går vidare:

\(\begin{array}{rclcl} a^{1 \over 2} \cdot a^{1 \over 2} & = & a & \qquad | & \sqrt{\,.\,} \\ \sqrt{a^{1 \over 2} \cdot a^{1 \over 2}} & = & \sqrt{a} & & \\ a^{1 \over 2} & = & \sqrt{a} & \qquad & \\ \end{array}\)

V.s.b.   (Vilket skulle bevisas)

I följande ska \( \; n \; \) vara ett heltal \( > 0 \) och \( \, a \, \neq 0 \).

Påstående:

Lagen om högre rötter \( \quad a^{1 \over n} \; = \; \sqrt[n]{a} \)

Bevisidé:

Vi visar påståendet för specialfallet \( \, n=3 \):

Vi multiplicerar \( a \)\(^{1 \over 3} \) tre gånger med sig själv och använder första potenslagen:

\( \displaystyle a^{1 \over 3} \cdot a^{1 \over 3} \cdot a^{1 \over 3} \; = \; a^{{1 \over 3} + {1 \over 3} + {1 \over 3}} \; = \; a^{3 \over 3} \; = \; a^1 \; = \; a \)

Vi drar 3:e roten ur båda leden och går vidare:

\(\begin{array}{rclcl} a^{1 \over 3} \cdot a^{1 \over 3} \cdot a^{1 \over 3} & = & a & \qquad | & \sqrt[3]{\,.\,} \\ \sqrt[3]{a^{1 \over 3} \cdot a^{1 \over 3} \cdot a^{1 \over 3}} & = & \sqrt[3]{a} & & \\ a^{1 \over 3} & = & \sqrt[3]{a} & \qquad & \\ \end{array}\)

V.s.b.

Denna bevisidé kan vidareutvecklas till det allmänna fallet, där \( \, m \, \) ska vara ett heltal, \( \, n \, \) ett heltal \( > 0 \) och \( \, a \, \neq 0 \):

Lagen om rationell exponent \( \quad \displaystyle a^{m \over n} \; = \; \sqrt[n]{a^m} \)

Tabellen över Potenslagarna borde kompletteras med dessa lagar för rationella exponenter.



Potensekvationer

Anta i fortsättningen att \( \, x \, \) är en okänd variabel och \( b\, \) och \( c\, \) givna konstanter \( \neq 0 \) .

Funktioner av typ \( y = x^3\, \) kallas för potensfunktioner, generellt \( \; y = c \cdot x^b\, \).
Ekvationer av typ \( x^3\, = 8 \) kallas för potensekvationer, generellt \( \; x^b\, = c \).

I potensfunktioner och -ekvationer förekommer \( \, x \, \) i basen.

Potensekvationer löses genom rotdragning.

Rotdragning är ekvivalent (identiskt) med potentiering med rationella exponenter.

För t.ex. potensekvationen \( x^3\, = 8 \) finns det två olika sätt att beskriva lösningen via rotdragning:

\[\begin{align} x^3 & = 8 \qquad & | \; \sqrt[3]{\;\;} \\ \sqrt[3]{x^3} & = \sqrt[3]{8} \\ x & = 2 \\ \end{align}\]

Alternativt med potens med rationell exponent:

\[\begin{align} x^3 & = 8 \qquad & | \; (\;\;\;)^{1 \over 3} \; \text{samma som} \; \sqrt[3]{\;\;} \\ (x^3)^{1 \over 3} & = 8^{1 \over 3} \qquad & | \; \text{3:e potenslagen på VL} \\ x^{3\cdot{1 \over 3}} & = 8^{1 \over 3} \\ x & = 2 \\ \end{align}\]

De alternativa lösningarna av ekvationen ovan är ett exempel på att rötter alltid kan skrivas som potenser med rationella exponenter.


Blandade exempel

Potens Ex 1.jpg


Potens Ex 2.jpg


Potens Ex 3.jpg


Internetlänkar

http://www.youtube.com/watch?v=iYgG4LUqXks

http://www.webbmatte.se/gym/arabiska/2/2_8_4sv.html

http://www.webbmatte.se/gym/arabiska/2/2_8_3sv.html

http://wiki.math.se/wikis/forberedandematte1/index.php/1.3_%C3%96vningar





Copyright © 2010-2017 Math Online Sweden AB. All Rights Reserved.