Skillnad mellan versioner av "1.2 Lösning 1b"

Från Mathonline
Hoppa till: navigering, sök
m (Tömde sidan)
m
 
Rad 1: Rad 1:
 +
Tittar man på Maries bana kan man se att höjden <math> \, y \, </math> är <math> \, 10 \, </math> när tiden <math> \, x \, </math> är <math> \, 0 </math>:
  
 +
:::<math> y = - 5\,x^2 + 4\,x + 10 </math>
 +
 +
Eftersom både höjden och tiden är positiva kommer banan stanna i koordinatsystemets första kvadrant. Därför är det lämpligt att välja för både <math> \, x</math>- och <math> \, y</math>-axelns min-värdet <math> \, 0 </math>.
 +
 +
Eftersom Marie enligt <b>a)</b> når en maximalhöjd på <math> \, 10,8 </math> m kan man välja ett lite större max-värde på <math> \, y</math>-axeln, säg <math> \, 12 </math>. Om <math> \, x</math>-axeln vet vi bara att symmetrilinjen går genom <math> \, x = 0,4 \, </math>. Om hon efter <math> \, 0,4 </math> sek når sin maximala höjd gissar vi att hon slår i vattnet kanske innan <math> \, 2 </math> sek. Därför:
 +
 +
:::<math> x_{min}\, = 0 </math>
 +
 +
:::<math> x_{max}\, = 2 </math>
 +
 +
:::<math> y_{min}\, = 0 </math>
 +
 +
:::<math> y_{max}\, = 12 </math>
 +
 +
Pga de lite annorlunda storleksordningar på <math> \, x</math>- och <math> \, y</math>-axeln är det kanske lämpligt att välja skalan <math> \, 1 \, </math> på <math> \, x</math>- och <math> \, 10 \, </math> på <math> \, y</math>-axeln:
 +
 +
:::<math> x_{scl}\, = 1 </math>
 +
 +
:::<math> y_{scl}\, = 10 </math>
 +
 +
Alla dessa värden är inte exakta och kan variera lite beroende på räknarens typ.

Nuvarande version från 17 augusti 2018 kl. 16.06

Tittar man på Maries bana kan man se att höjden \( \, y \, \) är \( \, 10 \, \) när tiden \( \, x \, \) är \( \, 0 \):

\[ y = - 5\,x^2 + 4\,x + 10 \]

Eftersom både höjden och tiden är positiva kommer banan stanna i koordinatsystemets första kvadrant. Därför är det lämpligt att välja för både \( \, x\)- och \( \, y\)-axelns min-värdet \( \, 0 \).

Eftersom Marie enligt a) når en maximalhöjd på \( \, 10,8 \) m kan man välja ett lite större max-värde på \( \, y\)-axeln, säg \( \, 12 \). Om \( \, x\)-axeln vet vi bara att symmetrilinjen går genom \( \, x = 0,4 \, \). Om hon efter \( \, 0,4 \) sek når sin maximala höjd gissar vi att hon slår i vattnet kanske innan \( \, 2 \) sek. Därför:

\[ x_{min}\, = 0 \]
\[ x_{max}\, = 2 \]
\[ y_{min}\, = 0 \]
\[ y_{max}\, = 12 \]

Pga de lite annorlunda storleksordningar på \( \, x\)- och \( \, y\)-axeln är det kanske lämpligt att välja skalan \( \, 1 \, \) på \( \, x\)- och \( \, 10 \, \) på \( \, y\)-axeln:

\[ x_{scl}\, = 1 \]
\[ y_{scl}\, = 10 \]

Alla dessa värden är inte exakta och kan variera lite beroende på räknarens typ.