Skillnad mellan versioner av "2.2 Genomsnittlig förändringshastighet"
Taifun  (Diskussion | bidrag) m (→Begreppet)  | 
				Taifun  (Diskussion | bidrag)  m  | 
				||
| Rad 9: | Rad 9: | ||
<!-- [[Media: Lektion 21 Rotekvationer.pdf|Lektion 1 Rotekvationer]] -->  | <!-- [[Media: Lektion 21 Rotekvationer.pdf|Lektion 1 Rotekvationer]] -->  | ||
| − | ==   | + | __TOC__  | 
| + | == Vad är genomsnittlig förändringshastighet ==  | ||
'''Givet''':  | '''Givet''':  | ||
Versionen från 30 april 2011 kl. 16.30
| Teori | Övningar | 
Vad är genomsnittlig förändringshastighet
Givet:
- Funktionen \( y \, = \, f\,(x) \) i form av en formel, tabell eller graf.
 
- Något intervall på \( x\, \)-axeln\[ x_1 \,\leq\, x \,\leq\, x_2 \] dvs ett intervall med givna gränser \( x_1\, \) och \( x_2\, \).
 
Sökt:
- Funktionens genomsnittliga förändringshastighet i detta intervall dvs:
 
- \[ {\Delta y \over \Delta x} \; = \; {y_2 - y_1 \over x_2 - x_1} \; = \; {f(x_2) \, - \, f(x_1) \over x_2 - x_1} \]
 
En annan form på den genomsnittliga förändringshastigheten får vi om vi inför den nya beteckningen \( h\, \) för intervallets längd:
- \[\begin{align} h & = x_2 - x_1 \qquad & | \; + \; x_1 \\ x_1 + h & = x_2 \\ \end{align}\]
 
Då kan funktionen \( y = f\,(x) \):s genomsnittliga förändringshastighet i intervallet \( x_1 \,\leq\, x \,\leq\, x_1 + h \) definieras som:
- \[ {\Delta y \over \Delta x} \; = \; {f(x_1 + h) \, - \, f(x_1) \over h} \]
 
Vilket av de två identiska uttrycken ovan man använder beror på sammanhanget. I rent beräkningssammanhang föredras ofta den första formen, medan man i teoretiska resonemang, speciellt när man definierar derivatan exakt och bevisar deriveringsreglerna, snarare använder sig av den andra formen.
Kärt barn har många namn: De två uttrycken ovan har ett antal namn som allihopa kan anses vara synonymer:
- Genomsnittlig förändringshastighet
 
- Förändringskvot
 
- Ändringskvot
 
- Differenskvot
 
Om vi kommer ihåg hur begreppet lutning till en rät linje var definierat i Matte B-kursen, kan vi säga att uttrycket ovan är inget annat än lutningen till den räta linje som ersätter kurvan \( y = f\,(x) \) i det betraktade intervallet. Dvs om man bortser från kurvans verkliga (kanske krokiga) förlopp och antar istället att det går en rät linje i det betraktade intervallet kan denna räta linjes lutning beräknas med uttrycket ovan. Den räta linjens lutning kallas då kurvans genomsnittliga förändringshastighet i det betraktade intervallet.
Exempel 1
Givet:
- Funktionen \( y \, = \, x^2 \)
 
- Intervallet\[ 0 \,\leq\, x \,\leq\, 2 \]
 
Sökt:
- Funktionens genomsnittliga förändringshastigheten i detta intervall.
 
Lösning:
- \[ {\Delta y \over \Delta x} \; = \; {f(2) \, - \, f(0) \over 2 - 0} \; = \; {2^2 \, - \, 0^2 \over 2 - 0} \; = \; {4 \, - \, 0 \over 2} \; = \; {4 \over 2} \; = \; 2 \]
 
Funktionen \( y = x^2 \, \) växer i intervallet \( 0 \leq x \leq 2 \) med 2 y-enheter per x-enhet. Detta är innebörden av att funktionens genomsnittliga förändringshastighet i detta intervall är 2.