Skillnad mellan versioner av "2.5 Deriveringsregler"

Från Mathonline
Hoppa till: navigering, sök
m
m
Rad 6: Rad 6:
 
|}
 
|}
  
 +
 +
I detta avsnitt kommer vi att gå igenom och bevisa en rad regler som ska hjälpa oss att derivera de viktigaste typer av funktioner utan att behöva gå tillbaka till derivatans definition varje gång. I slutet kommer vi att sammanställa alla deriveringsregler i en tabell. Ur praktisk problemlösningssynpunkt är därför det här avsnittet om inte det viktigaste, så dock det mest använda i Matte C-kursen. 
  
 
== Derivatan av en konstant ==
 
== Derivatan av en konstant ==

Versionen från 8 maj 2011 kl. 10.02

       Teori          Övningar      


I detta avsnitt kommer vi att gå igenom och bevisa en rad regler som ska hjälpa oss att derivera de viktigaste typer av funktioner utan att behöva gå tillbaka till derivatans definition varje gång. I slutet kommer vi att sammanställa alla deriveringsregler i en tabell. Ur praktisk problemlösningssynpunkt är därför det här avsnittet om inte det viktigaste, så dock det mest använda i Matte C-kursen.

Derivatan av en konstant

Påstående:

En konstants derivata är 0, dvs:
Om \( f(x) = c \quad {\rm och} \quad c = {\rm const.} \)
då \( f\,'(x) = 0 \)

Bevis:

Om vi tillämpar derivatans definition

\[ f\,'(x) = \lim_{h \to 0} \, {f(x+h) - f(x) \over h} \]

på \( f(x) = c\, \) kan vi skriva:

\[ f\,'(x) = \lim_{h \to 0} \, {c \, - \, c \over h} \; = \; {0 \over h} \; = \; 0 \]


Detta gäller därför att både \( f(x+h) = c\, \) och \( f(x) = c\, \) för alla \( x\, \). Dvs funktionen \( f(x)\, \):s värde är alltid konstanten \( c\, \) oavsett vilket x man använder i \( f(x)\, \). Funktionsvärdet är \( c\, \) för vilket \( x\, \) som helst, även om \( x\, \) är ett uttryck.

Vad som skulle bevisas (V.s.b.).

Exempel:

För funktionen \( f(x) = 4\, \) blir derivatan:

\[ f\,'(x) = \lim_{h \to 0} \, {f(x+h) \, - \, f(x) \over h} = {4 \, - \, 4 \over h} = {0 \over h} = 0 \]

+++

Påstående:


\[ a^x \cdot a^y \; = \; a^{x+y} \]

Bevis:

Påståendet kan bevisas genom att använda potensens definition:

\[ a^x \cdot a^y \; = \; \underbrace{a \cdot a \cdot \; \ \cdots \; \cdot a}_{x} \; \cdot \; \underbrace{a \cdot a \cdot \; \ \cdots \; \cdot a}_{y} \; = \; \underbrace{a \cdot a \cdot \; \ \cdots \; \cdot a}_{x+y} \; = \; a^{x+y} \]

Derivatan av en linjär funktion

Följande lagar gäller för potenser där basen \( a\, \) är ett tal \( \neq 0 \), exponenterna \( x\, \) och \( y\, \) vilka rationella tal som helst och \( m,\,n \) heltal (\( n\neq 0 \)), med exempel till höger:

Påstående (Produkt av potenser med samma bas):

\[ a^x \cdot a^y \; = \; a^{x+y} \]

Bevis:

Påståendet kan bevisas genom att använda potensens definition:

\[ a^x \cdot a^y \; = \; \underbrace{a \cdot a \cdot \; \ \cdots \; \cdot a}_{x} \; \cdot \; \underbrace{a \cdot a \cdot \; \ \cdots \; \cdot a}_{y} \; = \; \underbrace{a \cdot a \cdot \; \ \cdots \; \cdot a}_{x+y} \; = \; a^{x+y} \]

Påstående (Nollte potens):

\[ a^0 \; = \; 1 \]

Bevis:

Påståendet kan bevisas genom att använda potenslagen för division av potenser med samma bas:

\[ a^0 \; = \; a^{x-x} \; = \; {a^x \over a^x} \; = \; 1 \]

Påstående (Rationell exponent):

\[ a^{m \over n} \; = \; \sqrt[n]{a^m} \]

Bevisidé:

Vi tar specialfallet \( m=1 \) och \( n=3 \), multiplicerar \( a^{1 \over 3} \) tre gånger med sig själv och använder potenslagen om produkt av potenser med samma bas:

\[ a^{1 \over 3} \cdot a^{1 \over 3} \cdot a^{1 \over 3} \; = \; a^{{1 \over 3} + {1 \over 3} + {1 \over 3}} \; = \; a^{3 \over 3} \; = \; a^1 \; = \; a \]

Definitionen för 3:e roten ur a är\[\sqrt[3]{a} = \] Tal som 3 gånger med sig själv ger a. Men enligt raden ovan är det tal som 3 gånger med sig själv ger a, just \( a^{1 \over 3} \). Alltså måste detta tal vara lika med 3:e roten ur a:

\[ a^{1 \over 3} \; = \; \sqrt[3]{a} \]

Denna bevisidé kan vidareutvecklas till det allmänna fallet för alla heltal \( m\, \) och \( n\neq 0 \).

Derivatan av en potens

a


Derivatan av ett polynom

a


Derivatan av 1 / x

a


Derivatan av Roten ur x

a


Deriveringstabell

Internetlänkar

http://www.matematikvideo.se/video.php?id=36

http://www.webbmatte.se/gym/arabiska/2/2_8_4sv.html

http://www.webbmatte.se/gym/arabiska/2/2_8_3sv.html

http://wiki.math.se/wikis/forberedandematte1/index.php/1.3_%C3%96vningar


Copyright © 2010-2011 Taifun Alishenas. All Rights Reserved.