Skillnad mellan versioner av "2.3a Lösning 10"

Från Mathonline
Hoppa till: navigering, sök
m
m
Rad 2: Rad 2:
  
  
:<math> {f(x+h) - f(x) \over h} = {- 1 \over x\,(x+h)} </math>
+
:<math> {f(x+h) - f(x) \over h} = {- h/h \over x\,(x+h)}= {- 1 \over x\,(x+h)} </math>
  
  
 
:<math> \lim_{h \to 0} {f(x+h) - f(x) \over h} = \lim_{h \to 0} \; {- 1 \over x\,(x+h)} = {- 1 \over x\,(x+0)} = - \, {1 \over x^2} </math>
 
:<math> \lim_{h \to 0} {f(x+h) - f(x) \over h} = \lim_{h \to 0} \; {- 1 \over x\,(x+h)} = {- 1 \over x\,(x+0)} = - \, {1 \over x^2} </math>

Versionen från 4 september 2014 kl. 10.50

\[ f(x+h) - f(x) = {1 \over x+h} - {1 \over x} = {x \over x\,(x+h)} - {x+h \over x\,(x+h)} = {x - (x+h) \over x\,(x+h)} = {x - x - h \over x\,(x+h)} = {- h \over x\,(x+h)} \]


\[ {f(x+h) - f(x) \over h} = {- h/h \over x\,(x+h)}= {- 1 \over x\,(x+h)} \]


\[ \lim_{h \to 0} {f(x+h) - f(x) \over h} = \lim_{h \to 0} \; {- 1 \over x\,(x+h)} = {- 1 \over x\,(x+0)} = - \, {1 \over x^2} \]