Skillnad mellan versioner av "2.3a Lösning 10"
Från Mathonline
		
		
		
Taifun  (Diskussion | bidrag) m  | 
				Taifun  (Diskussion | bidrag)  m  | 
				||
| Rad 1: | Rad 1: | ||
| − | :<math> f(x+h) - f(x) = {1 \over x+h} - {1 \over x} = {x \over x\,(x+h)} - {x+h \over x\,(x+h)} = {x - (x+h) \over x\,(x+h)} = {x - x - h \over x\,(x+h)} = {- h \over x\,(x+h)} </math>  | + | :<math> \begin{array}{rcl} f(x+h) - f(x) = {1 \over x+h} - {1 \over x} = {x \over x\,(x+h)} - {x+h \over x\,(x+h)} & = & {x - (x+h) \over x\,(x+h)} = {x - x - h \over x\,(x+h)} = \\  | 
| + |                                                                                                                    & = & {- h \over x\,(x+h)}   | ||
| + | \end{array}</math>  | ||
Versionen från 28 september 2014 kl. 19.58
\[ \begin{array}{rcl} f(x+h) - f(x) = {1 \over x+h} - {1 \over x} = {x \over x\,(x+h)} - {x+h \over x\,(x+h)} & = & {x - (x+h) \over x\,(x+h)} = {x - x - h \over x\,(x+h)} = \\ & = & {- h \over x\,(x+h)} \end{array}\]
\[ {f(x+h) - f(x) \over h} = {- h/h \over x\,(x+h)}= {- 1 \over x\,(x+h)} \]
\[ \lim_{h \to 0} {f(x+h) - f(x) \over h} = \lim_{h \to 0} \; {- 1 \over x\,(x+h)} = {- 1 \over x\,(x+0)} = - \, {1 \over x^2} \]