Skillnad mellan versioner av "3.2 Lösning 4g"
Från Mathonline
Taifun (Diskussion | bidrag) m |
Taifun (Diskussion | bidrag) m |
||
Rad 13: | Rad 13: | ||
<b>Nollställe 1:</b> <math> {\color{White} x} x_1 = 1 \quad {\color{White} x} </math> | <b>Nollställe 1:</b> <math> {\color{White} x} x_1 = 1 \quad {\color{White} x} </math> | ||
− | Vi sätter in <math> x_1 = 1 \, </math> i andraderivatan | + | Vi sätter in <math> x_1 = 1 \, </math> i andraderivatan: |
− | :<math> f''(1) \, = \, -18\cdot 1 + 36 = 18 > 0 </math> | + | ::<math> f''(1) \, = \, -18\cdot 1 + 36 = 18 > 0 </math> |
Andraderivatan är positiv för <math> x_1 = 1 \, </math>. Slutsats<span style="color:black">:</span> <math> f(x) \, </math> har ett minimum i <math> x_1 = 1 \, </math>. | Andraderivatan är positiv för <math> x_1 = 1 \, </math>. Slutsats<span style="color:black">:</span> <math> f(x) \, </math> har ett minimum i <math> x_1 = 1 \, </math>. | ||
Rad 21: | Rad 21: | ||
<b>Nollställe 2:</b> <math> {\color{White} x} x_2 = 3 \quad {\color{White} x} </math> | <b>Nollställe 2:</b> <math> {\color{White} x} x_2 = 3 \quad {\color{White} x} </math> | ||
− | Vi sätter in <math> x_2 = 3 \, </math> in i andraderivatan | + | Vi sätter in <math> x_2 = 3 \, </math> in i andraderivatan: |
::<math> f''(3) \, = \, -18\cdot 3 + 36 = -18 < 0 </math> | ::<math> f''(3) \, = \, -18\cdot 3 + 36 = -18 < 0 </math> | ||
Andraderivatan är negativ för <math> x_2 = 3 \, </math>. Slutsats<span style="color:black">:</span> <math> f(x) \, </math> har ett maximum i <math> x_2 = 3 \, </math>. | Andraderivatan är negativ för <math> x_2 = 3 \, </math>. Slutsats<span style="color:black">:</span> <math> f(x) \, </math> har ett maximum i <math> x_2 = 3 \, </math>. |
Versionen från 13 december 2014 kl. 18.24
Derivatan nollställen från 4f):
- \[ \begin{array}{rcl} x_1 & = & 1 \\ x_2 & = & 3 \end{array}\]
Lösning med reglerna om maxima och minima med andraderivata:
- \[ \begin{array}{rcl} f'(x) & = & -9\,x^2 + 36\,x - 27 \\ f''(x) & = & -18\,x + 36 \end{array}\]
Nollställe 1: \( {\color{White} x} x_1 = 1 \quad {\color{White} x} \)
Vi sätter in \( x_1 = 1 \, \) i andraderivatan:
- \[ f''(1) \, = \, -18\cdot 1 + 36 = 18 > 0 \]
Andraderivatan är positiv för \( x_1 = 1 \, \). Slutsats: \( f(x) \, \) har ett minimum i \( x_1 = 1 \, \).
Nollställe 2: \( {\color{White} x} x_2 = 3 \quad {\color{White} x} \)
Vi sätter in \( x_2 = 3 \, \) in i andraderivatan:
- \[ f''(3) \, = \, -18\cdot 3 + 36 = -18 < 0 \]
Andraderivatan är negativ för \( x_2 = 3 \, \). Slutsats: \( f(x) \, \) har ett maximum i \( x_2 = 3 \, \).