Skillnad mellan versioner av "3.3 Terasspunkter"

Från Mathonline
Hoppa till: navigering, sök
m (Terasspunkter)
m (Terasspunkter)
Rad 35: Rad 35:
  
 
:::<math>\begin{array}{rcl}  f(x) & = & x^3    \\
 
:::<math>\begin{array}{rcl}  f(x) & = & x^3    \\
                            f'(x) & = & 3\,x^2 \\
+
                            f'(x) & = & 3\,x^2 \\
                            f''(x) & = & 6\,x
+
                          f''(x) & = & 6\,x
 
         \end{array}</math>
 
         \end{array}</math>
  
Så här ser graferna ut:
+
Så här ser graferna ut som vi ska undersöka i och kring punkten <math> \, x = 0 \, </math>:
  
 
[[Image: Terasspunkt 1.jpg]]&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;[[Image: Terasspunkt 2.jpg]]&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;[[Image: Terasspunkt 3.jpg]]
 
[[Image: Terasspunkt 1.jpg]]&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;[[Image: Terasspunkt 2.jpg]]&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;[[Image: Terasspunkt 3.jpg]]
  
Funktionens graf till vänster visar att det inte föreligger en extrempunkt - varken maximum eller minimum.
+
Funktionens graf till vänster visar att det i punkten <math> \, x = 0 \, </math> inte föreligger en extrempunkt, varken maximum eller minimum. Det handlar om en <math>-</math> för oss <math>-</math> ny typ av kritisk punkt som kallas terasspunkt. Kritiskt, därför att
  
 
+++ För att få reda på +++
 
+++ För att få reda på +++

Versionen från 28 december 2014 kl. 01.10

       <-- Förra avsnitt          Teori          Övningar          --> Nästa avsnitt      


Lektion 31 Kurvkonstruktion med derivata I

Lektion 32 Kurvkonstruktion med derivata II


Terasspunkter

I förra avsnitt lärde vi oss två metoder för att hitta en funktions extrempunkter dvs maxima eller minima:

  • Funktionens derivata \( \, = \, 0 \, \) och andraderivatan \( \, < \, 0 \, \) eller \( \, > \, 0 \, \) dvs \( \, \neq \, 0 \, \).
  • Funktionens derivata \( \, = \, 0 \, \) och derivatan byter tecken kring sitt nollställe.

Båda metoder uteslöt följande alternativ:

  • Både funktionens derivata och andraderivata \( \, = \, 0 \, \).
  • Funktionens derivata \( \, = \, 0 \, \) och derivatan bibehåller sitt tecken kring sitt nollställe.

Detta alternativ tar vi upp nu: Vad händer om funktionens derivata och andraderivata \( \, = \, 0 \, \) eller om funktionens derivata \( \, = \, 0 \, \) och bibehåller sitt tecken kring sitt nollställe?

Ett sådant fall föreligger i följande enkelt exempel:

\[\begin{array}{rcl} f(x) & = & x^3 \\ f'(x) & = & 3\,x^2 \\ f''(x) & = & 6\,x \end{array}\]

Så här ser graferna ut som vi ska undersöka i och kring punkten \( \, x = 0 \, \):

Terasspunkt 1.jpg      Terasspunkt 2.jpg      Terasspunkt 3.jpg

Funktionens graf till vänster visar att det i punkten \( \, x = 0 \, \) inte föreligger en extrempunkt, varken maximum eller minimum. Det handlar om en \(-\) för oss \(-\) ny typ av kritisk punkt som kallas terasspunkt. Kritiskt, därför att

+++ För att få reda på +++

Regeln om terasspunkter

Två kriterier behövs för att få reda på en funktions maxima och minima: ett om derivatans nollställen, ett om andraderivatans tecken. Båda måste vara uppfyllda. Följande regler gäller:

:

Derivatans nollställen och andraderivatans tecken avgör för vilka \(\, x \) en funktion har maxima resp. minima:


Funktionen \( {\color{White} x} y \, = \, f(x) {\color{White} x} \) har ett maximum i \( {\color{White} x} x = a {\color{White} x} \) om derivatan \( {\color{White} x} f\,'(a) \, = \, 0 {\color{White} x} \) och andraderivatan \( {\color{White} x} f\,''(a) \, {\bf {\color{Red} <}} \, 0 {\color{White} x}. \)


Funktionen \( {\color{White} x} y \, = \, f(x) {\color{White} x} \) har ett minimum i \( {\color{White} x} x = a {\color{White} x} \) om derivatan \( {\color{White} x} f\,'(a) \, = \, 0 {\color{White} x} \) och andraderivatan \( {\color{White} x} f\,''(a) \, {\bf {\color{Red} >}} \, 0 {\color{White} x}. \)


Om derivatan \( {\color{White} x} f\,'(a) \, = \, 0 {\color{White} x} \) och andraderivatan \( {\color{White} x} f\,''(a) \, {\bf {\color{Red} =}} \, 0 {\color{White} x} \) har funktionen varken ett maximum eller ett minimum.


Reglerna ovan säger i ord:



Där derivatan är \( \, 0 \) och andraderivatan är negativ har funktionen ett maximum.

Där derivatan är \( \, 0 \) och andraderivatan är positiv har funktionen ett minimum.

Där både derivatan och andraderivatan är \( \, 0 \) föreligger varken ett maximum eller ett minimum. Vad som gäller då behandlas i nästa avsnitt.


Ingen terasspunkt

Globala maxima och minima

Exempel på kurvkonstruktion

Ett lurigt fall