Skillnad mellan versioner av "3.3 Lösning 6b"
Från Mathonline
		
		
		
Taifun  (Diskussion | bidrag) m  | 
				Taifun  (Diskussion | bidrag)  m  | 
				||
| Rad 8: | Rad 8: | ||
Derivatans graf till höger visar att <math> f'(x) \;\; {\rm har\;nollställen\;i} \;\; x = 0 \;\; {\rm och\;i} \;\; x = -3 </math>.  | Derivatans graf till höger visar att <math> f'(x) \;\; {\rm har\;nollställen\;i} \;\; x = 0 \;\; {\rm och\;i} \;\; x = -3 </math>.  | ||
| − | Derivatans nollställe i <math> \, x = 0 \, </math> är en dubbelrot (byter inte tecken) vilket innebär att funktionen har en terasspunkt   | + | Derivatans nollställe i <math> \, x = 0 \, </math> är en dubbelrot (byter inte tecken) vilket innebär att funktionen har en terasspunkt i <math> \, x = 0 \, </math>.  | 
| − | Derivatans nollställe i <math> \, x = -3 \, </math> är av enkel typ vilket medför att funktionen har en extrempunkt   | + | Derivatans nollställe i <math> \, x = -3 \, </math> är av enkel typ vilket medför att funktionen har en extrempunkt i <math> \, x = -3 \, </math>.  | 
| − | Derivatan byter tecken kring nollstället <math> \, x = -3 \, </math> från <math> \, + \, </math> till <math> \, - \, </math> vilket visar att funktionens extrempunkt   | + | Derivatan byter tecken kring nollstället <math> \, x = -3 \, </math> från <math> \, + \, </math> till <math> \, - \, </math> vilket visar att funktionens extrempunkt i <math> \, x = -3 \, </math> är en maximipunkt.  | 
Nuvarande version från 10 januari 2015 kl. 14.11
Funktionens graf till vänster visar:
\( f(x) \;\; {\rm har\;en\;terasspunkt\;i} \;\; x = 0 \;\; {\rm och\;en\;maximipunkt\;i} \;\; x = -3 \).
Derivatans graf till höger visar att \( f'(x) \;\; {\rm har\;nollställen\;i} \;\; x = 0 \;\; {\rm och\;i} \;\; x = -3 \).
Derivatans nollställe i \( \, x = 0 \, \) är en dubbelrot (byter inte tecken) vilket innebär att funktionen har en terasspunkt i \( \, x = 0 \, \).
Derivatans nollställe i \( \, x = -3 \, \) är av enkel typ vilket medför att funktionen har en extrempunkt i \( \, x = -3 \, \).
Derivatan byter tecken kring nollstället \( \, x = -3 \, \) från \( \, + \, \) till \( \, - \, \) vilket visar att funktionens extrempunkt i \( \, x = -3 \, \) är en maximipunkt.
