Skillnad mellan versioner av "3.4 Kurvkonstruktioner"
Taifun (Diskussion | bidrag) m |
Taifun (Diskussion | bidrag) m |
||
Rad 101: | Rad 101: | ||
Att globalt maximum saknas har inte att göra med funktionens egenskaper utan snarare med intervallets. Man säger att intervallet är "öppet": Ändarna tillhör inte intervallet. | Att globalt maximum saknas har inte att göra med funktionens egenskaper utan snarare med intervallets. Man säger att intervallet är "öppet": Ändarna tillhör inte intervallet. | ||
− | Hade <math> f(x) </math> varit definierad i det "slutna" intervallet<span style="color:black">:</span> <math> | + | Hade <math> f(x) </math> varit definierad i det "slutna" intervallet<span style="color:black">:</span> <math> -2 \leq x \leq 2 \quad </math> hade <math> \, f(2) = f(-2) = 4 \, </math> varit funktionens globala maximum. |
Versionen från 15 januari 2015 kl. 19.48
<-- Förra avsnitt | Teori | Övningar | --> Nästa avsnitt |
Innehåll
Fortfarande förutsätts att alla funktioner \( {\color{White} x} y \, = \, f(x) {\color{White} x} \) vi behandlar här är kontinuerliga i alla punkter av det betraktade området.
Globala maxima och minima
I avsnittet om Lokala maxima och minima hade vi tittat på sådana punkter som hade maximala och minimala \( \, y\)-värden i sin närmaste omgivning, därför "lokala", se bilden till höger.
I detta avsnitt ska vi betrakta sådana punkter som har största och minsta \( \, y\)-värden i ett intervall, därför "globala", se bilden till vänster.
I praktiken hittar man en funktions globala extrema genom att:
- Hitta funktionens lokala extrema med någon av de regler vi lärde oss i förra avsnitt (andraderivatan eller teckenstudium).
- Beräkna de lokala extremvärdena.
- Beräkna funktionsvärdena i definitionsintervallets ändpunkter.
- Jämföra de lokala extremvärdena med värdena i definitionsintervallets ändpunkter.
Globalt extremum saknas
En problematik som kan dyka upp när man är ute efter globala extrema är att de inte existerar. Exempel:
Följande funktion är definierad i det angivna intervallet:
Att globalt maximum saknas har inte att göra med funktionens egenskaper utan snarare med intervallets. Man säger att intervallet är "öppet": Ändarna tillhör inte intervallet.
Hade \( f(x) \) varit definierad i det "slutna" intervallet: \( -2 \leq x \leq 2 \quad \) hade \( \, f(2) = f(-2) = 4 \, \) varit funktionens globala maximum.