Skillnad mellan versioner av "1.5 Lösning 7a"
Från Mathonline
Taifun (Diskussion | bidrag) m |
Taifun (Diskussion | bidrag) m |
||
Rad 1: | Rad 1: | ||
<math> 7\%\,</math> årsränta innebär en förändringsfaktor på <math> 1,07\, </math> per år. | <math> 7\%\,</math> årsränta innebär en förändringsfaktor på <math> 1,07\, </math> per år. | ||
− | Vi inför som obekanten | + | Vi inför som obekanten <math> \; x \; = </math> Antal år som behövs för att startkapitalet fördubblats. |
− | + | ||
− | + | ||
Aktuellt belopp på kontot: | Aktuellt belopp på kontot: |
Versionen från 7 juli 2015 kl. 20.44
\( 7\%\,\) årsränta innebär en förändringsfaktor på \( 1,07\, \) per år.
Vi inför som obekanten \( \; x \; = \) Antal år som behövs för att startkapitalet fördubblats.
Aktuellt belopp på kontot:
- efter \(1\,\) år\[ \;\,5\,000 \cdot 1,07 \]
- efter \(2\,\) år\[ (5\,000 \cdot 1,07) \cdot 1,07 = 5\,000 \cdot (1,07)^2 \]
\[ \cdots \]
- efter \(x\,\) år\[ (5\,000 \cdot 1,07) \cdot 1,07) \cdots 1,07 = 5\,000 \cdot (1,07)^x \]
Kravet på fördubbling av startkapitalet ger följande ekvation:
\[\begin{align} 5\,000 \cdot (1,07)^x & = 10\,000 \\ (1,07)^x & = 2 \\ \end{align}\]
Detta är en exponentialekvation.