Skillnad mellan versioner av "1.5 Potenslagarna"

Från Mathonline
Hoppa till: navigering, sök
m (Definition av potens)
m (Definition av potens)
Rad 18: Rad 18:
  
 
::::<math> a^3 = a \cdot a \cdot a </math>
 
::::<math> a^3 = a \cdot a \cdot a </math>
 +
  
 
Ett uttryck av formen <math> a^x\, </math> kallas <span style="color:red">potens</span>. <math> a\, </math> heter <span style="color:red">basen</span> och <math> x\, </math> <span style="color:red">exponenten</span>.
 
Ett uttryck av formen <math> a^x\, </math> kallas <span style="color:red">potens</span>. <math> a\, </math> heter <span style="color:red">basen</span> och <math> x\, </math> <span style="color:red">exponenten</span>.

Versionen från 6 mars 2011 kl. 15.46

       Teori          Övningar      


Definition av potens

Om \( x\, \) är ett positivt heltal och \( a \neq 0 \) kan uttrycket \( a^x\, \) definieras som en förkortning för upprepad multiplikation av a med sig själv:

\[ a^x = \underbrace{a \cdot a \cdot a \cdot \quad \ \cdots \quad \cdot a}_{x} \]

Dvs \( a\, \) multiplicerat med sig själv \( x\, \) gånger. T.ex.:

\[ a^2 = a \cdot a \]
\[ a^3 = a \cdot a \cdot a \]


Ett uttryck av formen \( a^x\, \) kallas potens. \( a\, \) heter basen och \( x\, \) exponenten.

Potenslagarna

Följande lagar gäller för potenser:

Potenslagarna 70a.jpg Potens Ex 60.jpg

Potenslagarna ovan gäller även för exponenter \( x\, \) som är negativa eller bråktal, även om vi inledningsvis definierade potensen \( a^x\, \) endast för positiva heltal \( x\, \).

Bevis av några potenslagar

Påstående (Produkt av potenser med samma bas):

\[ a^x \cdot a^y \; = \; a^{x+y} \]

Bevis:

Påståendet kan bevisas genom att använda potensens definition:

\[ a^0 \; = \; a^{x-x} \; = \; {a^x \over a^x} \; = \; 1 \]

Påstående (Nollte potens):

\[ a^0 \; = \; 1 \]

Bevis:

Påståendet kan bevisas genom att använda potenslagen för division av potenser med samma bas:

\[ a^0 \; = \; a^{x-x} \; = \; {a^x \over a^x} \; = \; 1 \]

Påstående (Negativ exponent):

\[ a^{-x} \; = \; {1 \over a^x} \]

Bevis:

Påståendet kan bevisas genom att använda potenslagen för division av potenser med samma bas samt lagen om nollte potensen:

\[ a^{-x} \; = \; a^{0-x} \; = \; {a^0 \over a^x} \; = \; {1 \over a^x} \]

Exempel på potenslagars använding