Skillnad mellan versioner av "1.5 Lösning 1b"
Från Mathonline
		
		
		
Taifun  (Diskussion | bidrag) m (Created page with "<math> {2\,x^{-5} \over 3\,x^{-8}} \cdot (2\,x)^{-1} = {2\,x^{-5-(-8)} \over 3} \cdot (2\,x)^{-1} = {2\,x^{-5+8} \over 3} \cdot (2\,x)^{-1} = {2\,x^3 \over 3} \cdot (2\,x)^{-1} =...")  | 
				Taifun  (Diskussion | bidrag)  m  | 
				||
| Rad 1: | Rad 1: | ||
| − | <math> {2\,x^{-5} \over 3\,x^{-8}} \cdot (2\,x)^{-1} = {2\,x^{-5-(-8)} \over 3} \cdot (2\,x)^{-1} = {2\,x^{-5+8} \over 3} \cdot (2\,x)^{-1} =   | + | <math> {2\,x^{-5} \over 3\,x^{-8}} \cdot (2\,x)^{-1} = {2\,x^{-5-(-8)} \over 3} \cdot (2\,x)^{-1} = {2\,x^{-5+8} \over 3} \cdot (2\,x)^{-1} =  </math>  | 
| − | <math> = {2\,x^3 \over 3} \cdot {1 \over 2\,x} =  {2\,x^3 \cdot 1 \over 3 \cdot 2\,x} =  {x^2 \over 3}</math>  | + | <math> = {2\,x^3 \over 3} \cdot (2\,x)^{-1} = {2\,x^3 \over 3} \cdot {1 \over 2\,x} =  {2\,x^3 \cdot 1 \over 3 \cdot 2\,x} =  {x^2 \over 3}</math>  | 
Versionen från 9 mars 2011 kl. 22.08
\( {2\,x^{-5} \over 3\,x^{-8}} \cdot (2\,x)^{-1} = {2\,x^{-5-(-8)} \over 3} \cdot (2\,x)^{-1} = {2\,x^{-5+8} \over 3} \cdot (2\,x)^{-1} = \)
\( = {2\,x^3 \over 3} \cdot (2\,x)^{-1} = {2\,x^3 \over 3} \cdot {1 \over 2\,x} =  {2\,x^3 \cdot 1 \over 3 \cdot 2\,x} =  {x^2 \over 3}\)