Skillnad mellan versioner av "2.5 Deriveringsregler"
Taifun (Diskussion | bidrag) m |
Taifun (Diskussion | bidrag) m (→Derivatan av en x i kvadrat ( x^2\, )) |
||
Rad 67: | Rad 67: | ||
<math> f\,'(x) = \lim_{h \to 0} \, {f(x+h) \, - \, f(x) \over h} = \lim_{h \to 0} \, {-8\, (x+h) + 9 - (-8\,x + 9) \over h} = \lim_{h \to 0} \, {-8\, x -8\, h + 9 + 8\, x - 9 \over h} = \lim_{h \to 0} \, {-8\, h \over h} = -8 </math> | <math> f\,'(x) = \lim_{h \to 0} \, {f(x+h) \, - \, f(x) \over h} = \lim_{h \to 0} \, {-8\, (x+h) + 9 - (-8\,x + 9) \over h} = \lim_{h \to 0} \, {-8\, x -8\, h + 9 + 8\, x - 9 \over h} = \lim_{h \to 0} \, {-8\, h \over h} = -8 </math> | ||
− | == Derivatan av | + | == Derivatan av x i kvadrat <math> x^2\, </math> == |
a | a |
Versionen från 8 maj 2011 kl. 11.44
Teori | Övningar |
Innehåll
I detta avsnitt kommer vi att gå igenom och bevisa en rad regler som ska hjälpa oss att derivera de viktigaste typer av funktioner som förekommer i tillämpningarna, utan att varje gång behöva använda derivatans definition direkt. I bevisen tillämpas derivatans definition en gång för alla på respektive funktionstyp. Sedan kan man använda de bevisna reglerna i fortsättningen. I slutet kommer vi att sammanställa alla deriveringsregler i en tabell. Ur praktisk problemlösningssynpunkt är därför det här avsnittet om inte det viktigaste, så dock det mest använda i hela C-kursen.
Derivatan av en konstant
Påstående:
- En konstants derivata är 0, dvs:
- Om \( f(x) = c \quad {\rm och} \quad c = {\rm const.} \)
- då \( f\,'(x) = 0 \)
Bevis:
Om vi tillämpar derivatans definition
- \[ f\,'(x) = \lim_{h \to 0} \, {f(x+h) - f(x) \over h} \]
på \( f(x) = c\, \) kan vi skriva:
- \[ f\,'(x) = \lim_{h \to 0} \, {c \, - \, c \over h} \; = \; {0 \over h} \; = \; 0 \]
Detta gäller därför att både \( f(x+h) = c\, \) och \( f(x) = c\, \) för alla \( x\, \). Dvs funktionen \( f(x)\, \):s värde är alltid konstanten \( c\, \) oavsett vilket \( x\, \) man använder i \( f(x)\, \). Funktionsvärdet är \( c\, \) för vilket \( x\, \) som helst, även om \( x\, \) är ett uttryck.
Vad som skulle bevisas (V.s.b.).
Exempel:
För funktionen \( f(x) = 4\, \) blir derivatan:
- \[ f\,'(x) = \lim_{h \to 0} \, {f(x+h) \, - \, f(x) \over h} = {4 \, - \, 4 \over h} = {0 \over h} = 0 \]
Derivatan av en linjär funktion
Påstående:
- En linjär funktions derivata är konstant, närmare bestämt:
- Om \( f(x) \; = \; k\cdot x \, + \, m \quad {\rm och} \quad k = {\rm const. } \quad m = {\rm const.} \)
- då \( f\,'(x) \; = \; k \)
Bevis:
Om vi tillämpar derivatans definition på \( f(x) = c\, \) kan vi skriva\[ f\,'(x) = \lim_{h \to 0} \, {f(x+h) - f(x) \over h} = \lim_{h \to 0} \, {k\cdot (x+h) + m - (k\cdot x + m) \over h} = \lim_{h \to 0} \, {k\cdot x + k\cdot h + m - k\cdot x - m \over h} = \lim_{h \to 0} \, {k\cdot h \over h} = k \]
Detta gäller därför att \( f(x+h) = k\cdot (x+h) + m \), vilket vi får om vi i funktionen \( f(x)= k\cdot x + m \) ersätter \( x\, \) med \( x+h\, \).
Vad som skulle bevisas (V.s.b.).
Exempel:
För funktionen \( f(x) = -8\,x + 9 \) blir derivatan\[ f\,'(x) = \lim_{h \to 0} \, {f(x+h) \, - \, f(x) \over h} = \lim_{h \to 0} \, {-8\, (x+h) + 9 - (-8\,x + 9) \over h} = \lim_{h \to 0} \, {-8\, x -8\, h + 9 + 8\, x - 9 \over h} = \lim_{h \to 0} \, {-8\, h \over h} = -8 \]
Derivatan av x i kvadrat \( x^2\, \)
a
Derivatan av en potens
a
Derivatan av ett polynom
a
Derivatan av 1 / x
a
Derivatan av Roten ur x
a
Deriveringstabell
Internetlänkar
http://www.matematikvideo.se/video.php?id=36
http://www.webbmatte.se/gym/arabiska/2/2_8_4sv.html
http://www.webbmatte.se/gym/arabiska/2/2_8_3sv.html
http://wiki.math.se/wikis/forberedandematte1/index.php/1.3_%C3%96vningar
Copyright © 2010-2011 Taifun Alishenas. All Rights Reserved.