Skillnad mellan versioner av "1.4 Lösning 10b"
Från Mathonline
		
		
		
Taifun  (Diskussion | bidrag) m  | 
				Taifun  (Diskussion | bidrag)  m  | 
				||
| Rad 3: | Rad 3: | ||
<math> f(x) = {x+2 \over (x+2) \cdot (x-3)} </math>  | <math> f(x) = {x+2 \over (x+2) \cdot (x-3)} </math>  | ||
| − | Detta visar att <math> f(x)\,</math> inte är definierad för <math> x_1 = -2\, </math> och för <math>   | + | Detta visar att <math> f(x)\,</math> inte är definierad för <math> x_1 = -2\, </math> och för <math> x_2 = 3\, </math>, för nämnaren blir 0 för dessa två x-värden.  | 
| + | |||
| + | Av dessa två diskontinuiteter är <math> x_1 = -2\, </math> hävbar, därför att faktorn <math> x + 2\, </math> kan förkortas i det rationella uttryck som definierar <math> f(x)\, </math>.  | ||
Versionen från 21 september 2012 kl. 11.05
I övning 10a) kunde vi skriva funktionen \( f(x)\,\) med faktoriserad nämnare så här\[ f(x) = {x+2 \over (x+2) \cdot (x-3)} \]
Detta visar att \( f(x)\,\) inte är definierad för \( x_1 = -2\, \) och för \( x_2 = 3\, \), för nämnaren blir 0 för dessa två x-värden.
Av dessa två diskontinuiteter är \( x_1 = -2\, \) hävbar, därför att faktorn \( x + 2\, \) kan förkortas i det rationella uttryck som definierar \( f(x)\, \).