2.5 Fördjupning till Deriveringsregler
<-- Förra avsnitt | Teori | Övningar | Fördjupning | Nästa avsnitt --> |
Lektion 26 Deriveringsregler I
Lektion 27 Deriveringsregler II
Innehåll
Bevis av deriveringsreglerna
I detta avsnitt kommer vi att gå igenom och (delvis) bevisa regler som ska hjälpa oss att derivera de viktigaste typer av funktioner som förekommer i tillämpningarna, utan att varje gång behöva använda derivatans definition direkt. De kallas deriveringsregler. I bevisen tillämpas derivatans definition en gång för alla på respektive funktionstyp. Sedan kan man använda reglerna i fortsättningen utan att behöva härleda dem.
I slutet kommer vi att sammanställa alla deriveringsregler i en tabell som vi kommer att använda hela tiden.
Ur praktisk problemlösningssynpunkt är därför det här avsnittet om inte det viktigaste, så dock det mest använda i Matte 3c-kursens övningar.
I förra avsnitt hade vi ställt upp derivatans definition för en funktion \( y = f(x)\, \) i en viss punkt \( x = a\, \). Låter vi \( a\, \) variera, kan vi skriva derivatans definition så här:
- \[ f\,'(x) = \lim_{h \to 0} \, {f(x+h) - f(x) \over h} \]
Denna definition kommer att ligga till grund för alla våra bevis för deriveringsreglerna i detta avsnitt.
Derivatan av en konstant
Påstående:
Derivatan av en konstant är 0.
Om \( {\color{White} x} f(x) = c \quad {\rm där} \quad c = {\rm const.} \)
då \( {\color{White} x} f\,'(x) = 0 \).
Bevis:
Om vi tillämpar derivatans definition på \( f(x) = c\, \) kan vi skriva:
- \[ f\,'(x) = \lim_{h \to 0} \, {f(x+h) \, - \, f(x) \over h} = \lim_{h \to 0} \, {c \, - \, c \over h} \; = \; \lim_{h \to 0} \, {0 \over h} \; = \; 0 \]
Att \( f(x+h) = c\, \) inser man när man preciserar den givna funktionen \( f(x) = c\, \) genom att betona för alla \( {\color{Red} x} \). Dvs funktionen \( \,f(x)\):s värde är alltid konstant oavsett vad man sätter in för \( x\, \) i \( \,f(x)\). Detta även om man sätter in ett uttryck för \( x\, \), i det här fallet \( x+h\, \).
Exempel:
För funktionen \( f(x) = -5\, \) blir derivatan:
- \[ f\,'(x) = \lim_{h \to 0} \, {f(x+h) \, - \, f(x) \over h} = \lim_{h \to 0} \, {-5 \, - \, (-5) \over h} = \lim_{h \to 0} \, {-5 \, + \, 5 \over h} = \lim_{h \to 0} \, {0 \over h} = 0 \]
Derivatan av en linjär funktion
Påstående:
Derivatan av en linjär funktion är konstant.
Om \( f(x) \; = \; k\cdot x \, + \, m \quad {\rm där} \quad k,\,m = {\rm const. } \)
då \( f\,'(x) \; = \; k \)
Bevis:
Om vi tillämpar derivatans definition på \( f(x) = k\cdot x + m \) kan vi skriva\[ f\,'(x) = \lim_{h \to 0} \, {f(x+h) - f(x) \over h} = \lim_{h \to 0} \, {k\cdot (x+h) + m - (k\cdot x + m) \over h} = \lim_{h \to 0} \, {k\cdot x + k\cdot h + m - k\cdot x - m \over h} = \lim_{h \to 0} \, {k\cdot h \over h} = k \]
Att \( f(x+h) = k\cdot (x+h) + m \) inser man när man i funktionen \( f(x)= k\cdot x + m \) ersätter \( x\, \) med \( x+h\, \).
Exempel:
För funktionen \( f(x) = -8\,x + 9 \) blir derivatan\[ f\,'(x) = \lim_{h \to 0} \, {f(x+h) \, - \, f(x) \over h} = \lim_{h \to 0} \, {-8\, (x+h) + 9 - (-8\,x + 9) \over h} = \lim_{h \to 0} \, {-8\, x -8\, h + 9 + 8\, x - 9 \over h} = \lim_{h \to 0} \, {-8\, h \over h} = -8 \]
Derivatan av en kvadratisk funktion
Påstående:
Derivatan av en kvadratisk funktion är en linjär funktion.
Om \( f(x) \; = \; a\,x^2 \, + \, b\,x \, + \, c \quad {\rm där} \quad a,\,b,\,c = {\rm const. } \)
då \( f\,'(x) \; = \; 2\,a\,x \, + \, b \)
Bevis:
Först ställer vi upp de uttryck som förekommer i derivatans definition.
För att ställa upp \( f\,(x+h) \) ersätter vi \( x\, \) med \( x+h\, \) i funktionen \( f(x) = a\,x^2 + b\,x + c \) :
\[ \begin{array}{rcl} f\,(x+h) & = & a\,(x+h)^2 + b\,(x+h) + c & = \\ & = & a\,(x^2 + 2\,x\,h + h^2) + b\,x + b\,h + c & = \\ & = & a\,x^2 + 2\,a\,x\,h + a\,h^2 + b\,x + b\,h + c \end{array}\]
\[ \begin{array}{rcl} f\,(x+h) - f\,(x) & = & a\,x^2 + 2\,a\,x\,h + a\,h^2 + b\,x + b\,h + c - (a\,x^2 + b\,x + c) & = \\ & = & a\,x^2 + 2\,a\,x\,h + a\,h^2 + b\,x + b\,h + c - a\,x^2 - b\,x - c & = \\ & = & 2\,a\,x\,h + a\,h^2 + b\,h & = \\ \end{array}\]
\[ {f(x+h) - f(x) \over h} = {2\,a\,x\,h + a\,h^2 + b\,h \over h} = {h\cdot (2\,a\,x\ + a\,h + b) \over h} = 2\,a\,x\ + a\,h + b \]
Sedan tillämpar vi derivatans definition genom att bilda gränsvärdet:
\[ f\,'(x) \; = \; \lim_{h \to 0} \; (2\,a\,x\ + a\,h + b) \; = \; 2\,a\,x\ + b \]
Exempel:
För funktionen \( f\,(x) = 5\,x^2 - 3\,x + 6 \) bildas derivatan steg för steg med hjälp av derivatans definition:
\[ \begin{array}{rcl} f\,(x+h) & = & 5\,(x+h)^2 - 3\,(x+h) + 6 & = \\ & = & 5\,(x^2 + 2\,x\,h + h^2) - 3\,x - 3\,h + 6 & = \\ & = & 5\,x^2 + 10\,x\,h + 5\,h^2 - 3\,x - 3\,h + 6 \end{array}\]
\[ \begin{array}{rcl} f\,(x+h) - f\,(x) & = & 5\,x^2 + 10\,x\,h + 5\,h^2 - 3\,x - 3\,h + 6 - (5\,x^2 - 3\,x + 6) & = \\ & = & 5\,x^2 + 10\,x\,h + 5\,h^2 - 3\,x - 3\,h + 6 - 5\,x^2 + 3\,x - 6 & = \\ & = & 10\,x\,h + 5\,h^2 - 3\,h & = \\ \end{array}\]
\[ {f(x+h) - f(x) \over h} = {10\,x\,h + 5\,h^2 - 3\,h \over h} = {h\cdot (10\,x\ + 5\,h - 3) \over h} = 10\,x\ + 5\,h - 3 \]
\[ f\,'(x) = \lim_{h \to 0} \, (10\,x + 5\,h - 3) = 10\,x - 3 \]
Derivatan av \( \displaystyle 1 \over x \)
Påstående:
- Om \( \displaystyle f(x) \; = \; {1 \over x} \)
- då \( \displaystyle f\,'(x) \; = \; - \, {1 \over x^2} \)
Bevis (med derivatans definition):
\[ f(x+h) - f(x) = {1 \over x+h} - {1 \over x} = {x \over x\,(x+h)} - {x+h \over x\,(x+h)} = {x - (x+h) \over x\,(x+h)} = {x - x - h \over x\,(x+h)} = {- h \over x\,(x+h)} \]
\[ {f(x+h) - f(x) \over h} = {- h/h \over x\,(x+h)}= {- 1 \over x\,(x+h)} \]
\[ f\,'(x) = \lim_{h \to 0} {f(x+h) - f(x) \over h} = \lim_{h \to 0} \; {- 1 \over x\,(x+h)} = {- 1 \over x\,(x+0)} = - \, {1 \over x^2} \]
Alternativt (med deriveringsregeln för potenser):
- \[ f(x) = {1 \over x} = x^{-1} \]
- \[ f\,'(x) = (-1)\cdot x^{-1-1} = (-1)\cdot x^{-2} = - \, {1 \over x^2} \]
Derivatan av Roten ur x
Påstående:
- Om \( f(x) \; = \; \sqrt{x} \)
- då \( f\,'(x) \; = \; {1 \over 2\, \sqrt{x}} \)
Bevis (med deriveringsregeln för potenser):
- \[ f(x) = \sqrt{x} = x\,^{1 \over 2} \]
- \[ f\,'(x) = {1 \over 2}\cdot x\,^{{1 \over 2}-1} = {1 \over 2}\cdot x\,^{-{1 \over 2}} = {1 \over 2}\cdot {1\over x\,^{1 \over 2}} = {1 \over 2}\cdot {1\over \sqrt{x}} = {1 \over 2\, \sqrt{x}} \]
Derivatan av ett polynom
Hittills har vi betraktat isolerade termer. Men hur blir det om de summeras med varandra och på så sätt sammansätts till ett polynom?
Exempel:
För polynomfunktionen \( f(x) = -3\,x^4\,+\,9\,x^3\,-\,8\,x^2\,+\,17\,x\,-\,12 \) blir derivatan:
- \[ f\,'(x) \, = -12\,x^3 + 27\,x^2 - 16\,x + 17 \]
Sats:
- En polynomfunktion deriveras termvis, dvs:
- Om \( f(x) = a_n\, x^n \qquad\,\, + \, a_{n-1}\, x^{n-1} \qquad\qquad + \quad \ldots \quad + a_1\, x + \, a \)
- då \( f\,'(x) = n\cdot a_n \, x^{n-1} \, + \, (n-1)\cdot a_{n-1} \, x^{n-2} \, + \quad \ldots \quad + \, a_1 \)
Exempel:
För polynomfunktionen \( f(x) = {1 \over 2}\,x^4\,+\,{5 \over 6}\,x^3\,-\,0,8\,x^2\,+\,12\,x\,-\,9 \) blir derivatan:
- \[ f\,'(x) \, = 4\cdot {1 \over 2}\,x^3 + 3\cdot {5 \over 6}\,x^2 - 2\cdot 0,8\,x + 12 = 2\,x^3 + {5 \over 2}\,x^2 - 1,6\,x + 12 \]