2.6 Derivatan av exponentialfunktioner

Från Mathonline
Hoppa till: navigering, sök
       Teori          Övningar      


Derivatan av den naturliga exponentialfunktionen

Här kommer vi att ställa upp deriveringsregeln för exponentialfunktionen \( y = e\,^x \) med basen \( e = 2,718281828\cdots \) (Eulers tal), även kallad den naturliga exponentialfunktionen.

För att kunna göra det gör vi ett (misslyckat) försök att med derivatans definition ställa upp en deriveringsregel för den allmänna exponentialfunktionen \( y = a\,^x \) med en godtycklig bas \( a > 0\, \). Det misslyckade försöket kommer att leda oss till frågeställningen:

Kan basen i den allmänna exponentialfunktionen väljas så att derivatan av \( y = a\,^x \) blir så enkel som möjligt, nämligen \( y\,' = a\,^x \)?

I matematikens historia har denna frågeställning motivertat den schweiziske matematikern Leonard Euler att ställa upp sin berömda formel för talet \( e\, \). På 1700-talet bevisade han att detta tal just var \( e\, \) som sedan dess kallas för Eulers tal. Vi försöker här att följa hans bevis.

Fil:ExpDeriv1 40c.jpg

Fil:ExpDeriv2 50.jpg

Fil:ExpDeriv3 50.jpg

Derivatan av den allmänna exponentialfunktionen

Från att ha ställt upp deriveringsregeln för den naturliga exponentialfunktionen \( y = e\,^x \) med basen \( e = 2,718281828\cdots \) är det bara ett enkelt steg till deriveringsregeln för den allmänna exponentialfunktionen \( y = a\,^x \) med en godtycklig bas \( a > 0\, \):

Fil:ExpDeriv4 50.jpg

Uppdaterad tabell över deriveringsregler

I följande tabell är \( c,\,k,\,m,\,n,\,a \) konstanter, medan \( x\, \) och \( y\, \) är variabler.

\( y\, \) \( y\,' \)
\( c\, \) \( 0\, \)
\( k\cdot x \, + \, m \) \( k\, \)
\( x^2\, \) \( 2\,x \)
\( a\,x^2 \) \( 2\,a\,x \)
\( x^n\, \) \( n\cdot x\,^{n-1} \)
\( a\,x\,^n \) \( n\cdot a\,x\,^{n-1} \)
\( {1 \over x} \) \( - {1 \over x^2} \)
\( \sqrt{x} \) \( {1 \over 2\, \sqrt{x}} \)
\( e\,^x \) \( e\,^x \)
\( e\,^{k\,x} \) \( k\cdot e\,^{k\,x} \)
\( c\cdot e\,^{k\,x} \) \( c\cdot k\cdot e\,^{k\,x} \)
\( a\,^x \) \( a\,^x \cdot \ln a \)
\( f(x) + g(x)\, \) \( f\,'(x) + g\,'(x) \)
\( a\cdot f(x) \) \( a\cdot f\,'(x) \)

De två sista raderna i tabellen är snarare generella satser än deriveringsregler. De gäller för alla funktioner \( f(x)\, \) och \( g(x)\, \). Av praktiska skäl tar vi upp dem ändå i samma tabell som deriveringsreglerna. Denna tabell kommer att ytterligare kompletteras i Matte D-kursen då vi kommer att lära oss fler deriveringsregler och fler generella satser.

Internetlänkar

http://www.youtube.com/watch?v=OyKmc2bPWe0

http://www.youtube.com/watch?v=8of_svLfcjk

http://www.youtube.com/watch?v=OY8CeLUxE64&feature=related

http://www.youtube.com/watch?v=2wH-g60EJ18&feature=related

http://www.larcentrum.org/Safir/MA1203W/htm/m03_deriv1/m03_deriv_definition.htm

http://www.naturvetenskap.org/index.php?option=com_content&view=article&id=129&Itemid=132


Copyright © 2010-2011 Taifun Alishenas. All Rights Reserved.