3.3 Terasspunkter

Från Mathonline
Version från den 28 december 2014 kl. 00.21 av Taifun (Diskussion | bidrag)

Hoppa till: navigering, sök
       <-- Förra avsnitt          Teori          Övningar          --> Nästa avsnitt      


Lektion 31 Kurvkonstruktion med derivata I

Lektion 32 Kurvkonstruktion med derivata II


Terasspunkter

I förra avsnitt lärde vi oss två metoder för att hitta en extrempunkt dvs ett maximum eller ett minimum:

  • f
  • g

, om derivatan är \(\,0\,\) och byter tecken +++

Under en vinternatt varierar temperaturen enligt funktionen \( {\color{White} x} \; y \, = \, f(x) \, = \, 0,24\,x^2\,-\,2,4\,x\,+\,7 {\color{White} x} \; \) med definitionsområdet: \( \quad 0 \leq x \leq 8 \).

där    \( y \; = \)   temperaturen i grader Celsius och

         \( x \; = \)   tiden i timmar efter midnatt

a)   Ställ upp första- och andraderivatan. Rita graferna till \( \,f(x) \), \( \,f'(x) \) och \( \,f''(x) \) i separata koordinatsystem.

b)   Bestäm nattens kallaste tidpunkt algebraiskt.

c)   Bestäm nattens lägsta temperatur algebraiskt.



Lösning:

a)   \( f(x) \, = \, 0,24\,x^2 - 2,4\,x + 7 \)

\[ f'(x) \, = \, 0,48\,x - 2,4 \]
\[ f''(x) \, = \, 0,48 \]

Terasspunkt 1.jpg      Terasspunkt 2.jpg      Terasspunkt 3.jpg



b)   För att få reda på derivatans nollställe som reglerna om maxima och minima med andraderivata kräver sätter vi derivatan till \( \, 0 \) och beräknar den tidpunkt \( x \, \) då derivatan blir \( \, 0 \):

\[\begin{array}{rcrcl} f'(x) & = & 0,48\,x - 2,4 & = & 0 \\ & & 0,48\,x & = & 2,4 \\ & & x & = & {2,4 \over 0,48} \\ & & x & = & 5 \end{array}\]

      Nu vet vi att derivatan blir \( \, 0 \) i \( x = 5 \, \) dvs tangenten till kurvan \( y = f(x) \, \) har lutningen \( 0\, \) dvs är horisontell i \( x = 5 \, \).

      Därmed är det bevisat att \( \, x = 5 \, \) är en extrempunkt. Men en extrempunkt kan vara ett maximum eller ett minimum.

      För att avgöra om denna extrempunkt är ett maximum eller ett minimum kräver regeln andraderivatans tecken.

      Därför sätter vi \( x = 5 \, \) in i andraderivatan och kollar om den blir positiv eller negativ:

\[ f''(5) = 0,48 \,>\, 0 \]

      Andraderivatan är positiv (konstant) för alla \( x \, \) och därmed även för \( x = 5 \, \). Därav följer att \( f(x) \, \) har ett minimum i \( x_{min} = 5 \, \).

      Alltså är nattens kallaste tidpunkt kl \( 5 \, \).



c)   Temperaturen vid kl \( 5 \, \) är:

\[ f(x_{min}) = f(5) = 0,24 \cdot 5^2 - 2,4 \cdot 5 + 7 = 1 \]

      Alltså är nattens lägsta temperatur \( 1 \, \) grad Celsius.

Regeln om terasspunkter

Två kriterier behövs för att få reda på en funktions maxima och minima: ett om derivatans nollställen, ett om andraderivatans tecken. Båda måste vara uppfyllda. Följande regler gäller:

:

Derivatans nollställen och andraderivatans tecken avgör för vilka \(\, x \) en funktion har maxima resp. minima:


Funktionen \( {\color{White} x} y \, = \, f(x) {\color{White} x} \) har ett maximum i \( {\color{White} x} x = a {\color{White} x} \) om derivatan \( {\color{White} x} f\,'(a) \, = \, 0 {\color{White} x} \) och andraderivatan \( {\color{White} x} f\,''(a) \, {\bf {\color{Red} <}} \, 0 {\color{White} x}. \)


Funktionen \( {\color{White} x} y \, = \, f(x) {\color{White} x} \) har ett minimum i \( {\color{White} x} x = a {\color{White} x} \) om derivatan \( {\color{White} x} f\,'(a) \, = \, 0 {\color{White} x} \) och andraderivatan \( {\color{White} x} f\,''(a) \, {\bf {\color{Red} >}} \, 0 {\color{White} x}. \)


Om derivatan \( {\color{White} x} f\,'(a) \, = \, 0 {\color{White} x} \) och andraderivatan \( {\color{White} x} f\,''(a) \, {\bf {\color{Red} =}} \, 0 {\color{White} x} \) har funktionen varken ett maximum eller ett minimum.


Reglerna ovan säger i ord:



Där derivatan är \( \, 0 \) och andraderivatan är negativ har funktionen ett maximum.

Där derivatan är \( \, 0 \) och andraderivatan är positiv har funktionen ett minimum.

Där både derivatan och andraderivatan är \( \, 0 \) föreligger varken ett maximum eller ett minimum. Vad som gäller då behandlas i nästa avsnitt.


Ingen terasspunkt

Globala maxima och minima

Exempel på kurvkonstruktion

Ett lurigt fall