3.3 Terasspunkter

Från Mathonline
Version från den 28 december 2014 kl. 13.01 av Taifun (Diskussion | bidrag)

Hoppa till: navigering, sök
       <-- Förra avsnitt          Teori          Övningar          --> Nästa avsnitt      


Lektion 31 Kurvkonstruktion med derivata I

Lektion 32 Kurvkonstruktion med derivata II


Terasspunkter

I förra avsnitt lärde vi oss två metoder för att hitta en funktions extrempunkter dvs maxima eller minima:

  • Funktionens derivata \( \, = \, 0 \, \) och andraderivatan \( \, < \, 0 \, \) eller \( \, > \, 0 \, \) dvs \( \, \neq \, 0 \, \).
  • Funktionens derivata \( \, = \, 0 \, \) och derivatan byter tecken kring sitt nollställe.

Båda metoder uteslöt följande alternativ:

  • Både funktionens derivata och andraderivata \( \, = \, 0 \, \).
  • Funktionens derivata \( \, = \, 0 \, \) och derivatan inte byter tecken kring sitt nollställe.

Dessa alternativ tar vi upp nu: Vad händer om funktionens derivata och andraderivata är \( \, 0 \, \) eller om derivatan är \( \, 0 \, \) och bibehåller sitt tecken kring nollstället?

Ett sådant fall föreligger i följande enkelt exempel:

\[\begin{array}{rcl} f(x) & = & x^3 \\ f'(x) & = & 3\,x^2 \\ f''(x) & = & 6\,x \end{array}\]

Vi ska undersöka funktionen \( \, f(x) = x^3 \, \) i och kring punkten \( \, x = 0 \, \) genom att titta på följande grafer:

Terasspunkt 1.jpg      Terasspunkt 2.jpg      Terasspunkt 3.jpg

Funktionens graf till vänster visar att det inte föreligger en extrempunkt i \( x = 0 \), varken ett maximum eller ett minimum. Det handlar snarare om en typ av kritisk punkt som är ny för oss. Kritiskt, därför att \(-\) precis som hos extrempunkter \(-\) tangenten till kurvan i denna punkt är horisontell dvs har lutningen \( \, 0 \, \). Denna nya typ av kritisk punkt kallas terasspunkt.

Bilden i mitten visar att derivatan har ett nollställe i \( \, x = 0 \, \). Det speciella med detta nollställe är att kurvan inte skär \( \, x\)-axeln utan bara berör den. Med andra ord, \( \, x = 0 \, \) är en dubbelrot till andragradsfunktionen \( \, f'(x) = 3\,x^2 \, \). Detta gör att derivatan inte byter tecken kring \( \, x = 0 \, \) utan är positiv både till vänster om och till höger om nollstället. Att derivatan är positiv innebär i sin tur att själva funktionen \( \, f(x) = x^3 \, \) är växande både till vänster om och till höger om \( \, x = 0 \, \) \(-\) ett kännetecken för terasspunkter.

Bilden till höger visar att även andraderivatan har ett nollställe i \( \, x = 0 \, \). Till skillnad från derivatans nollställe är detta nollställe av enkel typ, vilket framgår av att grafen verkligen skär \( \, x\)-axeln dvs byter tecken kring \( \, x = 0 \, \). I självaste punkten \( \, x = 0 \, \) är andraderivatan varken positiv eller negativ, varav följer att \( \, x = 0 \, \) inte är någon extrempunkt för funktionen \( \, f(x) = x^3 -\) ytterliare ett kännetecken för terasspunkter.

Vi har inte ritat grafen till tredjederivatan \( \, f'''(x) = 6 \), men den är \( \neq 0 \, \) vilket \(-\) och det är det nya hos terasspunkter \(-\) är ett nödvändigt villkor för att funktionen har en terasspunkt i \( \, x = 0 \, \). Därmed lämnar vi vårt enkla exempel och kommer till det allmänna fallet:


Regler om terasspunkter

Tre kriterier behövs för att få reda på en funktions terasspunkt: ett om derivatans nollställen, det andra om andraderivatans nollställen och det tredje om att tredjederivatan inte får vara \( \, 0 \, \). Alla tre måste vara uppfyllda. Generellt gäller:

:

Regeln med högre derivator:


Funktionen \( {\color{White} x} y \, = \, f(x) {\color{White} x} \) har en terasspunkt i \( {\color{White} x} x = a {\color{White} x} \) om \( {\color{White} x} f\,'(a) \, = \, f\,''(a) \, = \, 0 {\color{White} x} \) och \( {\color{White} x} f\,'''(a) \, {\bf {\color{Red} \neq}} \, 0 {\color{White} x}. \)


Om \( {\color{White} x} f\,'(a) \, = \, f\,''(a) \, = \, f\,'''(a) \, {\bf {\color{Red} =}} \, 0 {\color{White} x} \) har funktionen ingen terasspunkt i \( {\color{White} x} x = a {\color{White} x} \). I dett fall kan endast ett teckenstudium avgöra den kritiska punktens typ.


Alternativt till användning av högre derivator finns det alltid möjligheten att genomföra ett teckenstudium för att känna igen en terasspunkt.

Även här finns det två kriterier för att få reda på en funktions terasspunkt: ett om derivatans nollställen, ett om derivatans icke-teckenbyte. Närmare bestämt gäller följande regler:

:

Regeln med teckenstudium:


Funktionen \( {\color{White} x} y \, = \, f(x) {\color{White} x} \) har en terasspunkt i \( {\color{White} x} x = a {\color{White} x} \) om \( {\color{White} x} f\,'(a) \, = \, 0 {\color{White} x} \) och \( {\color{White} x} f\,'(x) {\color{White} x} \) inte byter tecken kring \( \, a \).

Ingen terasspunkt

Globala maxima och minima

Exempel på kurvkonstruktion

Ett lurigt fall