3.3 Övningar till Terasspunkter
<-- Förra avsnitt | Teori | Övningar | --> Nästa avsnitt |
E-övningar: 1-4
Övning 1
Följande funktion är given:
- \[ f(x) \, = \, - x^3 \, + \, 1 \]
a) Derivera funktionen och bestäm derivatans nollställe.
b) Vilket tecken har derivatan till vänster om sitt nollställe?
c) Vilket tecken har derivatan till höger om sitt nollställe?
d) Har funktionen i derivatans nollställe en extrempunkt eller en terasspunkt? Motivera.
e) Sammanfatta dina resultat från a)-d) i en teckentabell.
f) Rita funktionens och derivatans grafer i två olika koordinatsystem. Beskriv hur graferna bekräftar dina resultat.
Övning 2
Följande funktion är given:
- \[ f(x) \, = \, 2\,x^3 \, - \, 5 \]
a) Derivera funktionen tre gånger.
b) Bestäm derivatans nollställe.
c) Vilket värde har andraderivatan i derivatans nollställe?
d) Vilket värde har tredjederivatan i derivatans nollställe?
e) Har funktionen i derivatans nollställe en terasspunkt? Motivera. Om ja, ange terasspunktens koordinater.
f) Kontrollera dina resultat från a)-d) grafiskt genom att rita funktionens och derivatans grafer i två olika koordinatsystem.
Markera den kritiska punkten.
Övning 3
Följande funktion är given:
- \[ f(x) \, = \, x^4 \]
a) Rita funktionens och derivatans grafer i två olika koordinatsystem.
b) Vilken typ av kritisk punkt ser du i grafen?
c) Vilket värde har andraderivatan i derivatans nollställe?
d) Vilket värde har tredjederivatan i derivatans nollställe?
e) Har funktionen i derivatans nollställe en terasspunkt? Motivera. Om ja, ange terasspunktens koordinater.
f) Kontrollera dina resultat från a)-d) grafiskt genom att
Markera den kritiska punkten.