1.5 Potenslagarna
Teori | Övningar |
Innehåll
Några begrepp
Ett uttryck av formen \( a^x\, \) läses "a upphöjt till x" och kallas potens. \( a\, \) heter basen och \( x\, \) exponenten.
Om \( x\, \) är ett positivt heltal och \( a\, \) en given konstant \( \neq 0 \) kan potensen \( a^x\, \) definieras som en förkortning för upprepad multiplikation av a med sig själv:
- \[ a^x = \underbrace{a \cdot a \cdot a \cdot \quad \ \cdots \quad \cdot a}_{x} \]
T.ex.:
- \[ a^2 = a \cdot a \]
- \[ a^3 = a \cdot a \cdot a \]
Att ta \( a\, \) upphöjt till \( x\, \) är en räkneoperation som kallas exponentiering. När \( x=2\, \) pratar man om kvadrering.
Anta att \( x\, \) är en okänd variabel och \( b\, \) och \( c\, \) givna konstanter \( \neq 0 \) . Då kallas
- funktioner av typ \( y = 10^x\, \) exponentialfunktioner, generellt\[ y = c \cdot a^x\, \].
- ekvationer av typ \( 10^x\,= 125 \) exponentialekvationer, generellt\[ a^x\, = b \].
- funktioner av typ \( y = x^3\, \) potensfunktioner, generellt\[ y = x^b\, \].
- ekvationer av typ \( x^3\, = 8 \) potensekvationer, generellt\[ x^b\, = c \].
Medan exponentialekvationer löses genom logaritmering (se avsnitt 1.7 Logaritmer), löses potensekvationer genom rotdragning, t.ex:
- \[\begin{align} x^3 & = 8 \qquad & | \; \sqrt[3]{\;\;} \\ \sqrt[3]{x^3} & = \sqrt[3]{8} \\ x & = 2 \\ \end{align}\]
Alternativt (med bråk som exponent):
- \[\begin{align} x^3 & = 8 \qquad & | \; (\;\;\;)^{1 \over 3} \\ (x^3)^{1 \over 3} & = 8^{1 \over 3} \\ x^{3\cdot{1 \over 3}} & = 8^{1 \over 3} \\ x & = 2 \\ \end{align}\]
Den alternativa lösningsmetoden använder sig av potenslagar som behandlas nedan.
Potenslagarna
Följande lagar gäller för potenser:
Potenslagarna ovan gäller även för exponenter \( x\, \) som är negativa eller bråktal, även om vi inledningsvis definierade potensen \( a^x\, \) endast för positiva heltal \( x\, \).
Bevis av några potenslagar
Påstående (Produkt av potenser med samma bas):
- \[ a^x \cdot a^y \; = \; a^{x+y} \]
Bevis:
Påståendet kan bevisas genom att använda potensens definition:
- \[ a^x \cdot a^y \; = \; \underbrace{a \cdot a \cdot \; \ \cdots \; \cdot a}_{x} \; \cdot \; \underbrace{a \cdot a \cdot \; \ \cdots \; \cdot a}_{y} \; = \; \underbrace{a \cdot a \cdot \; \ \cdots \; \cdot a}_{x+y} \; = \; a^{x+y} \]
Påstående (Nollte potens):
- \[ a^0 \; = \; 1 \]
Bevis:
Påståendet kan bevisas genom att använda potenslagen för division av potenser med samma bas:
- \[ a^0 \; = \; a^{x-x} \; = \; {a^x \over a^x} \; = \; 1 \]
Påstående (Negativ exponent):
- \[ a^{-x} \; = \; {1 \over a^x} \]
Bevis:
Påståendet kan bevisas genom att använda potenslagen för division av potenser med samma bas samt lagen om nollte potensen:
- \[ a^{-x} \; = \; a^{0-x} \; = \; {a^0 \over a^x} \; = \; {1 \over a^x} \]