2.3a Lösning 8

Från Mathonline
Version från den 20 oktober 2017 kl. 15.18 av Taifun (Diskussion | bidrag)

(skillnad) ← Äldre version | Nuvarande version (skillnad) | Nyare version → (skillnad)
Hoppa till: navigering, sök

Ett exempel på en funktion \( f(x)\, \) som inte är definierad för \( x = -2 \, \) kan vara:

\[ f(x) = {(x-a) \cdot (x+2) \over x+2} \]

där \( a \, \) ska bestämmas så att \( \displaystyle \lim_{x \to -2}\,\,f(x) = 3 \). Dvs:

\[ \begin{array}{rcl} \displaystyle \lim_{x \to -2}\,{(x-a) \cdot (x+2) \over x+2} \,=\, \lim_{x \to -2}\,{(x-a)} \,=\, -2-a & = & 3 \\ a & = & -5 \end{array}\]

Således:

\[ f(x) = {(x-a) \cdot (x+2) \over x+2} \,=\, {(x+5) \cdot (x+2) \over x+2} \,=\, {x^2 + 7\,x + 10 \over x+2} \]

Kontroll:

1) Funktionen \( \displaystyle f(x) = {x^2 + 7\,x + 10 \over x+2} \) är inte definierad för \( x = -2 \, \).

2) \( \displaystyle \lim_{x \to -2}\,{x^2 + 7\,x + 10 \over x+2} = \lim_{x \to -2}\,{(x+5) \cdot (x+2) \over x+2} = \lim_{x \to -2}\,(x+5) = -2+5 = 3 \)