1.2 Lösning 3c
Från Mathonline
Version från den 9 december 2010 kl. 21.59 av Taifun (Diskussion | bidrag)
Att beräkna polynomets nollställen innebär att sätta polynomet till 0 och lösa följande ekvation\[ P(x) = 2\,x^2 +\,21\,x = 0 \]
Eftersom polynomet saknar konstant term kan man bryta ut x, den gemensamma faktorn i polynomets termer, och använda nollproduktmetoden\[\begin{align} 2\,x^2 +\,21\,x & = 0 \\ x\,(2\,x +\,21) & = 0 \\ x_1 & = 0 \\ 2\,x_2 +\,21 & = 0 \\ 2\,x_2 & = -21 \\ x_2 & = -10,5 \\ \end{align}\]
Sätter vi tillbaka \( t = 1 \) i substitutionen ovan\[ 1 = \sqrt{x} \] och kvadrerar får vi lösningen \( x = 1 \).