3.2 Svar 4c
Från Mathonline
Till vänster om funktionens minimum i \( \, x = 1 \, \) avtar funktionen, dvs derivatan är negativ.
Till höger om denna punkt växer funktionen och derivatan är positiv. Derivatans teckenbyte går från \( \, - \, \) till \( \, + \, \).
Det är därför funktionen har ett minimum i \( \, x = 1 \, \), vilket är ett exempel på regeln om maxima och minima med teckenstudie.