Skillnad mellan versioner av "1.3 Övningar till Rationella uttryck"
Taifun (Diskussion | bidrag) m (→Övning 5) |
Taifun (Diskussion | bidrag) m (→Övning 5) |
||
Rad 76: | Rad 76: | ||
− | b) <math> {3 \over | + | b) <math> {3 \over a-2} - {a+7 \over 6-3\,a} </math> |
</div>{{#NAVCONTENT:Svar 5a|1.4 Svar 5a|Lösning 5a|1.4 Lösning 5a|Svar 5b|1.4 Svar 5b|Lösning 5b|1.4 Lösning 5b}} | </div>{{#NAVCONTENT:Svar 5a|1.4 Svar 5a|Lösning 5a|1.4 Lösning 5a|Svar 5b|1.4 Svar 5b|Lösning 5b|1.4 Lösning 5b}} |
Versionen från 16 januari 2011 kl. 19.51
Teori | Övningar |
G-övningar: 1-6
Övning 1
För vilka värden på x är uttrycken nedan definierade och för vilka är de inte definierade?
a) \( x^2 + 1 \over 3\,x - 6 \)
b) \( x^2 - 5\,x + 3 \over (x+6) \cdot (x-1) \)
c) \( x^3 + 3\,x^2 -8\,x - 1 \over x^2 + 1 \)
d) \( 4\,x^4 -6\,x^2 + 1 \over x^2 - 16 \)
Övning 2
Beräkna exakt
a) \( f(3)\, \) om \( f(x) = {x^2 - 4\,x + 3 \over 2\,x^2 + 3} \)
b) \( g(2)\, \) om \( g(t) = {3\,t^2 - 2\,t \over t\,(t+1)} \)
c) \( h(-1)\, \) om \( h(x) = {x^3 - x^2 - 1 \over x^3 + x^2 + x} \)
d) \( f(-1)\, \) om \( f(z) = {z^3 - z^2 - z - 1 \over z^3 + z^2 + z + 1} \)
Övning 3
Förkorta följande uttryck så långt som möjligt, om det går:
a) \( 20\,x^3\,y^2 \over 4\,x^2\,y \)
b) \( x^2\,(x + y) \over x \)
c) \( x\,(x - y) \over y \)
Övning 4
Förenkla följande uttryck så långt som möjligt:
a) \( x - y \over y - x \)
b) \( 6\,(x-2)^2 \over 3\,x - 6 \)
Övning 5
Förenkla följande uttryck så långt som möjligt:
a) \( {x \over 3} + {x \over 2} - {x \over 6} \)
b) \( {3 \over a-2} - {a+7 \over 6-3\,a} \)
Övning 6
Betrakta raketens bana i övning 5. Använd din grafritande räknare för att genomföra följande uppgifter:
a) Undersök vilka min- och max-värden samt vilken skala man lämpligast bör använda på x- och y-axeln för att rita raketbanans graf. Ange dem i din räknares WINDOW.
b) Rita raketbanans graf och den räta linjen som åskådliggör höjden 200 m i samma koordinatsystem.
c) När slår raketen i marken? Använd din räknares ekvationslösare. Svara med tre decimaler.
VG-övningar: 7-10
Övning 7
Förenkla följande uttryck\[ 1 - x\,y \over (x\,y)^2 - x\,y \]
Övning 8
Ställ upp ett polynom av 4:e grad som har koefficienterna\[ \displaystyle a_4 = 3, \quad a_3 = 2, \quad a_2 = -3, \quad a_1 = -4, \quad a_0 = -3 \]
Övning 9
Visa att följande uttryck är identiskt med polynomet från övning 8 ovan\[ 2\,(x^2 - 1)^2 + (x + 2)\,(x^3 - 2) - 2\,x + x^2 - 1 \]
Övning 10
Två polynom är givna\[ P(x) = 2\,a \cdot x + 3\,a - 4\,b \]
\( Q(x) = 4 \cdot x - 6 \)
För vilka värden av \( a\, \) och \( b\, \) är \( P(x) = Q(x)\, \)?
MVG-övningar: 11-12
Övning 11
Följande 2:a gradspolynom är givet:
\[ P(x) = x^2 - 10\,x + 16 \]
a) Utveckla uttrycket \( Q(x) = (x - a) \cdot (x - b) \) till ett polynom. Bestäm \( a\, \) och \( b\, \) så att \( P(x) = Q(x)\, \). Använd jämförelse av koefficienter.
b) Visa att de värden du får för \( a\, \) och \( b\, \) i a)-delen är lösningar till 2:a gradsekvationen:
\[ x^2 - 10\,x + 16 = 0 \]
Övning 12
Visa att 2:a gradspolynomet \( P(x) = 8\,x^2 + 7\,x - 1 \) kan skrivas som
\[ (a\,x + b) \cdot (c\,x + d) \]
vilket innebär en faktorisering av polynomet \( P(x)\, \). Bestäm a, b, c och d genom att:
a) Hitta först polynomet \( P(x)\, \):s rötter \( x_1\, \) och \( x_2\, \) exakt, dvs bibehåll bråkformen.
b) Sätt sedan \( P(x) = k \cdot (x - x_1) \cdot (x - x_2) \) och bestäm k genom jämförelse av koefficienter. Ange a, b, c och d.