Skillnad mellan versioner av "1.3 Övningar till Rationella uttryck"
Taifun (Diskussion | bidrag) m (→Övning 8) |
Taifun (Diskussion | bidrag) m (→Övning 5) |
||
Rad 81: | Rad 81: | ||
c) <math> {3 \over a-2} - {a+7 \over 6-3\,a} </math> | c) <math> {3 \over a-2} - {a+7 \over 6-3\,a} </math> | ||
− | + | </div>{{#NAVCONTENT:Svar 5a|1.4 Svar 5a|Lösning 5a|1.4 Lösning 5a|Svar 5b|1.4 Svar 5b|Lösning 5b|1.4 Lösning 5b|Svar 5c|1.4 Svar 5c|Lösning 5c|1.4 Lösning 5c}} | |
== Övning 6 == | == Övning 6 == |
Versionen från 7 mars 2011 kl. 09.20
Teori | Övningar |
G-övningar: 1-6
Övning 1
För vilka värden på x är uttrycken nedan definierade och för vilka är de inte definierade?
a) \( x^2 + 1 \over 3\,x - 6 \)
b) \( x^2 - 5\,x + 3 \over (x+6) \cdot (x-1) \)
c) \( x^3 + 3\,x^2 -8\,x - 1 \over x^2 + 1 \)
d) \( 4\,x^4 -6\,x^2 + 1 \over x^2 - 16 \)
Övning 2
Beräkna exakt
a) \( f(3)\, \) om \( f(x) = {x^2 - 4\,x + 3 \over 2\,x^2 + 3} \)
b) \( g(2)\, \) om \( g(t) = {3\,t^2 - 2\,t \over t\,(t+1)} \)
c) \( h(-1)\, \) om \( h(x) = {x^3 - x^2 - 1 \over x^3 + x^2 + x} \)
d) \( f(-1)\, \) om \( f(z) = {z^3 - z^2 - z - 1 \over z^3 + z^2 + z + 1} \)
Övning 3
Förkorta följande uttryck så långt som möjligt, om det går:
a) \( 20\,x^3\,y^2 \over 4\,x^2\,y \)
b) \( x^2\,(x + y) \over x \)
c) \( x\,(x - y) \over y \)
Övning 4
Förenkla följande uttryck så långt som möjligt:
a) \( x - y \over y - x \)
b) \( 6\,(x-2)^2 \over 3\,x - 6 \)
Övning 5
Förenkla följande uttryck så långt som möjligt:
a) \( {x \over 3} + {x \over 2} - {x \over 6} \)
b) \( {2 \over x} + {3 \over x^2} + {4 \over x^3} \)
c) \( {3 \over a-2} - {a+7 \over 6-3\,a} \)
Övning 6
Förenkla följande uttryck så långt som möjligt:
a) \( {3\,(y-3) \over 8\,y} \cdot {24\,y \over y-3} \)
b) \( {x+y \over x^2} \cdot {x\,y \over x+y} \)
c) \( \left({2\,a - 4 \over a^2}\right)\, \Bigg / \,\left({a^2 - 4 \over a^4}\right) \)
VG-övningar: 7-10
Övning 7
Förenkla följande uttryck:
a) \( x^2 - 25 \over 8\,x^2 - 40\,x \)
b) \( 3\,x^2 - 12\,x \over x^2 - 6\,x + 8 \)
c) \( 1 - x\,y \over (x\,y)^2 - x\,y \)
Övning 8
Förenkla följande uttryck så långt som möjligt:
a) \( {6\,x \over 4 - 9\,x^2} - {1 \over 2 -3\,x} \)
b) \( {1-x \over x+1} - {1+x \over 1-x} + {4\,x \over 1-x^2} \)
c) \( {2\,x^2 - x^3 \over 2\,x^2 - 8} - {x \over x+2} + {x+2 \over 2} \)
Övning 9
Förenkla följande uttryck så långt som möjligt:
a) \( \left({1 \over 2\,x - 1} + {1 \over 2\,x + 1}\right) \cdot {2\,x + 1 \over 2\,x} \)
b) \( \left({a^2 - 6\,a + 9 \over b^6}\right)\, \Bigg / \,\left({a - 3 \over b^5}\right) \)
c) \( \left(1 - {x^2 \over y^2}\right)\, \Bigg / \,\left(1 - {x \over y}\right) \)
Övning 10
En rationell funktion är given\[ f(x) = {x+2 \over x^2 - x - 6} \]
a) Faktorisera nämnaren och skriv \( f(x)\, \) med faktoriserad nämnare.
b) Ange funktionens diskontinuiteter, dvs de x för vilka \( f(x)\, \) inte är definierad.
c) Vilken av funktionens diskontinuiteter är hävbar? Ange en funktion \( g(x)\, \) som inte längre har \(\, f(x)\):s hävbara diskontinuitet, men är annars identisk med \( f(x)\, \).
d) Rita graferna till \( f(x)\, \) och \( g(x)\, \). Kan man av grafernas utseende dra slutsatsen att funktionerna är identiska?
MVG-övningar: 11-12
Övning 11
För vilket värde av \( z\, \) har följande ekvation lösningen \( x = 2\; \)\[ {15\,x^2 - 2\,x - 6 \over 6} = {x - 3\,z \over 2} - {z - 2\,x^2 \over 3} - {z \over x} \]
Övning 12
Lös ekvationen
\( v - {u \over u\,v + v\,x} = {v\,x^2 \over x^2 - u^2} + {u\,v^2 \over v\,x + u\,v} \)
där \( u\, \) och \( v\, \) är givna konstanter och \( x\, \) ekvationens obekant. Lösningen kommer därför att bli ett rationellt uttryck i \( u\, \) och \( v\, \).