Skillnad mellan versioner av "Repetition: Exponentialfunktioner"

Från Mathonline
Hoppa till: navigering, sök
m (Taifun flyttade sidan Exponentialfunktioner till Repetition: Exponentialfunktioner utan att lämna en omdirigering)
m
Rad 2: Rad 2:
 
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%"
 
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%"
 
| style="border-bottom:1px solid #797979" width="5px" |  
 
| style="border-bottom:1px solid #797979" width="5px" |  
{{Not selected tab|[[1.4 Talet e och den naturliga logaritmen| <<&nbsp;&nbsp; Tillbaka till Talet e & ln]]}}
+
{{Not selected tab|[[1.3 Rationella uttryck| <<&nbsp;&nbsp;Förra avsnitt]]}}
{{Selected tab|[[Exponentialfunktioner|Genomgång]]}}
+
{{Not selected tab|[[Repetition: 10-logaritmer|Rep.: 10-logaritmer]]}}
{{Not selected tab|[[Övningar till Exponentialfunktioner|Övningar]]}}
+
{{Not selected tab|[[1.4 Talet e och den naturliga logaritmen|Genomgång Talet e & ln]]}}
{{Not selected tab|[[Repetition: 10-logaritmer|10-logaritmer]]}}
+
{{Not selected tab|[[1.4 Övningar till Talet e och den naturliga logaritmen|Övningar Talet e & ln]]}}
{{Not selected tab|[[Logaritmlagarna|Logaritmlagarna]]}}
+
{{Not selected tab|[[1.5 Kontinuerliga och diskreta funktioner|Nästa avsnitt&nbsp;&nbsp;>> ]]}}
 +
| style="border-bottom:1px solid #797979"  width="100%"| &nbsp;
 +
|}
 +
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%"
 +
| style="border-bottom:1px solid #797979" width="5px" | &nbsp;
 +
{{Selected tab|[[Repetition: Exponentialfunktioner|Rep.: Exponentialfunktioner]]}}
 +
{{Not selected tab|[[Repetition: Logaritmlagarna|Rep.: Logaritmlagarna]]}}
 +
{{Not selected tab|[[1.4 Talet e och den naturliga logaritmen|<span style="color:white">Genomgång</span>]]}}
 +
{{Not selected tab|[[1.4 Övningar till Talet e och den naturliga logaritmen|<span style="color:white">Övningar</span>]]}}
 +
{{Not selected tab|[[1.5 Kontinuerliga och diskreta funktioner|<span style="color:white">Nästa avsnitt&nbsp;&nbsp;>> </span>]]}}
 
| style="border-bottom:1px solid #797979"  width="100%"| &nbsp;
 
| style="border-bottom:1px solid #797979"  width="100%"| &nbsp;
 
|}
 
|}
 
  
 
<big>
 
<big>

Versionen från 21 september 2017 kl. 14.44

        <<  Förra avsnitt          Rep.: 10-logaritmer          Genomgång Talet e & ln          Övningar Talet e & ln          Nästa avsnitt  >>      
       Rep.: Exponentialfunktioner          Rep.: Logaritmlagarna          Genomgång          Övningar          Nästa avsnitt  >>      

Detta är ett repeterande underavsnitt i Matte 3-kursens avsnitt Talet e och den naturliga logaritmen.

Exponentialfunktioner är sådana funktioner som har sin oberoende variabel \( \, x \, \) i exponenten.


Exponentialfkt 600.jpg


Om log se nästa avsnitt: 10-logaritmer.


Exponentialekvationer

Själva operationen \( a\,^x\, \) dvs att ta \( a \) upphöjt till \( x \) kallas för exponentiering och är en ny räkneoperation.

Anta att \( \, x \, \) är en okänd variabel och \( \, b\, \) och \( \, c \, \) givna konstanter \( \neq 0 \) .

Exponentialfunktioner av typ \( \, y \, = \, c \cdot a\,^{\color{Red} x} \, \) ger upphov till en ny typ av ekvationer:

Ekvationer av typ \( \, a\,^{\color{Red} x} = b \, \) kallas för exponentialekvationer
\( \quad \), i exemplet ovan: \( \; 1,07\,^{\color{Red} x} \,= \, 2 \, \).

I både exponentialfunktioner och -ekvationer förekommer obekanten \( \, {\color{Red} x}\, \) i exponenten.

Exponentialekvationer löses genom logaritmering

som är exponentieringens inversa operation.

Se de kommande avsnitten: 10-logaritmer och Logaritmlagarna.

Till skillnad från exponentialekvationer förekommer i potensekvationer av typ \( \, x\,^a\, = b \, \) obekanten \( \, x \, \) i basen.

För deras lösning används en annan operation:

Potensekvationer löses genom rotdragning.




Internetlänkar

http://www.youtube.com/watch?v=rYHdUrKqxaU

http://goto.glocalnet.net/larsthomee/logaritm.html

http://www.kck.amal.se/webtutor/ovel/mattec/Funktioner/F3.html

http://wiki.math.se/wikis/sf0600_0701/index.php/3.3_Logaritmer





Copyright © 2011-2017 Taifun Alishenas. All Rights Reserved.